AI實用指南:5分鐘搭建你自己的LLM聊天應用

来源:https://www.cnblogs.com/guoxiaoyu/p/18097724
-Advertisement-
Play Games

本文介紹瞭如何快速搭建一個基於大型語言模型(LLM)的混元聊天應用。強調了開發速度的重要性,並指出了使用Streamlit這一工具的優勢,特別是對於不熟悉前端代碼的開發者來說,Streamlit提供了一種快速構建聊天應用的方法。 ...


今天,我們將迅速著手搭建一個高效且富有創意的混元聊天應用,其核心理念可以用一個字來概括——快。在這個快節奏的時代,構建一個基礎的LLM(Large Language Model,大型語言模型)聊天應用並不需要耗費太多時間。市面上充斥著各種功能強大的大型語言模型,我們可以根據項目需求靈活選擇,而今天的目標並非深入探討這些模型的技術細節,而是將重點放在如何快速上手。

Streamlit這一強大的工具,它能夠讓我們以最快速度搭建起一個具備流式打字機效果的聊天應用。對於那些和我一樣,對前端代碼望而卻步的開發者來說,Streamlit無疑是一個福音。

本次實操,我們將不會過多地糾纏於理論知識,而是將重點放在實戰操作上。

開始開發

依賴環境

開發之前,請確保你已經配置好了必要的開發環境,以下是你需要準備的一系列環境和工具,以確保開發過程的順利進行:

Python環境:Python 3.9

騰訊雲API服務:從騰訊雲控制台開通混元API並且獲取騰訊雲的SecretID、SecretKey

依賴包安裝:

pip install --upgrade tencentcloud-sdk-python

pip install streamlit

如果你對Streamlit還不太熟悉,安裝完成後,你可以通過執行streamlit hello或者python -m streamlit hello啟動一下入門實例。如果你希望對Streamlit有更深入的瞭解,我強烈建議你訪問其官方文檔。官方文檔提供了詳盡的指南、教程和API參考。

簡易流程

首先,請查閱騰訊雲官方簡易流程,然後,一旦您成功獲取相關信息的申請,填入並檢查輸出是否正常。

import os
from tencentcloud.common import credential
from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException
from tencentcloud.cvm.v20170312 import cvm_client, models

try:
    # 為了保護密鑰安全,建議將密鑰設置在環境變數中或者配置文件中,請參考本文憑證管理章節。
    # 硬編碼密鑰到代碼中有可能隨代碼泄露而暴露,有安全隱患,並不推薦。
    # cred = credential.Credential("secretId", "secretKey")
    cred = credential.Credential(
        os.environ.get("TENCENTCLOUD_SECRET_ID"),
        os.environ.get("TENCENTCLOUD_SECRET_KEY"))
    client = cvm_client.CvmClient(cred, "ap-shanghai")

    req = models.DescribeInstancesRequest()
    resp = client.DescribeInstances(req)

    print(resp.to_json_string())
except TencentCloudSDKException as err:
    print(err)

如果輸出結果呈現是這樣的,這便表明所得信息基本正確的,接下來我們便可順利進行後續的開發工作。

"TotalCount": 0, "InstanceSet": [], "RequestId": "714808e9-684a-4714-96f1-2a9fe77b6e55"

接下來,讓我們深入瞭解Streamlit是如何構建基礎的LLM(大型語言模型)聊天應用的,一起查看一下他們的官方演示代碼吧。

import streamlit as st
import random
import time

# Streamed response emulator
def response_generator():
    response = random.choice(
        [
            "Hello there! How can I assist you today?",
            "Hi, human! Is there anything I can help you with?",
            "Do you need help?",
        ]
    )
    for word in response.split():
        yield word + " "
        time.sleep(0.05)

st.title("Simple chat")

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Accept user input
if prompt := st.chat_input("What is up?"):
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        response = st.write_stream(response_generator())
    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": response})

切記,在運行Streamlit時,不要使用python命令,而應該使用streamlit run [your_script.py],否則可能會持續遇到錯誤提示。

觀察了代碼後,可以看出基本框架已經建立好了,接下來的步驟就是替換請求和響應部分。

關於請求和響應的實例,騰訊官方也提供了相關內容。你可以查看以下鏈接以獲取更多信息:

https://github.com/TencentCloud/tencentcloud-sdk-python/blob/master/examples/hunyuan/v20230901/chat_std.py

經過5分鐘的修改和代碼改進,最終成功地實現了可運行的版本。

還是一樣的規矩,最終代碼如下:

import json
import os
import streamlit as st
import random
import time

from tencentcloud.common import credential
from tencentcloud.common.exception.tencent_cloud_sdk_exception import TencentCloudSDKException
from tencentcloud.common.profile.client_profile import ClientProfile
from tencentcloud.hunyuan.v20230901 import hunyuan_client, models

st.title("混元小助手")
os.environ['id'] = '******'
os.environ['key'] = '******'

# 實例化一個認證對象,入參需要傳入騰訊雲賬戶secretId,secretKey
cred = credential.Credential(
    os.environ.get("id"),
    os.environ.get("key"))
cpf = ClientProfile()
# 預先建立連接可以降低訪問延遲
cpf.httpProfile.pre_conn_pool_size = 3
client = hunyuan_client.HunyuanClient(cred, "ap-beijing", cpf)
req = models.ChatStdRequest()

# Streamed response emulator
def response_generator():
    # msg = models.Message()
    # msg.Role = "user"
    # msg.Content = content
    req.Messages = []
    for m in st.session_state.messages:
        msg = models.Message()
        msg.Role = m["role"]
        msg.Content = m["content"]
        req.Messages.append(msg)
    
    resp = client.ChatStd(req)

    for event in resp:
        data = json.loads(event['data'])
        for choice in data['Choices']:
            yield choice['Delta']['Content'] + ""
    

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# Accept user input
if prompt := st.chat_input("有什麼需要幫助的?"):
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)
    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        response = st.write_stream(response_generator())
    # Add assistant response to chat history
    st.session_state.messages.append({"role": "assistant", "content": response})

在這裡需要註意一下,當使用streamlit進行流式回答時,你無需手動返迴文本數據,只需在方法內部使用yield關鍵字,並註明本次返回的內容即可。

演示視頻看下吧:

image

總結

本文介紹瞭如何快速搭建一個基於大型語言模型(LLM)的混元聊天應用。強調了開發速度的重要性,並指出了使用Streamlit這一工具的優勢,特別是對於不熟悉前端代碼的開發者來說,Streamlit提供了一種快速構建聊天應用的方法。

如果你對開發感興趣,市面上確實提供了許多大型模型供你選擇。即使簡單的聊天應用並不具備太多技術性,但你可以利用這些基礎框架,不斷添加自己所需的任何組件。這需要開拓思維,挖掘創意,讓你的應用更加豐富多彩。


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...