併發情況如何實現加鎖來保證數據一致性?

来源:https://www.cnblogs.com/Jcloud/archive/2023/12/05/17876895.html
-Advertisement-
Play Games

單體架構下鎖的實現方案 1. ReentrantLock全局鎖 ReentrantLock(可重入鎖),指的是一個線程再次對已持有的鎖保護的臨界資源時,重入請求將會成功。 簡單的與我們常用的Synchronized進行比較: ReentrantLock Synchronized 鎖實現機制 依賴AQ ...


單體架構下鎖的實現方案

1. ReentrantLock全局鎖

ReentrantLock(可重入鎖),指的是一個線程再次對已持有的鎖保護的臨界資源時,重入請求將會成功。

簡單的與我們常用的Synchronized進行比較:

ReentrantLock Synchronized
鎖實現機制 依賴AQS 監視器模式
靈活性 支持響應超時、中斷、嘗試獲取鎖 不靈活
釋放形式 必須顯示調用unlock()釋放鎖 自動釋放監視器
鎖類型 公平鎖 & 非公平鎖 非公平鎖
條件隊列 可關聯多個條件隊列 關聯一個條件隊列
可重入性 可重入 可重入

AQS機制:如果被請求的共用資源空閑,那麼就當前請求資源的線程設置為有效的工作線程,將共用資源通過CAScompareAndSetState設置為鎖定狀態;如果共用資源被占用,就採用一定的阻塞等待喚醒機制(CLH變體的FIFO雙端隊列)來保證鎖分配。

可重入性:無論是公平鎖還是非公平鎖的情況,加鎖過程會利用一個state值

private volatile int state


  • state值初始化的時候為0,表示沒有任何線程持有鎖
  • 當有線程來請求該鎖時,state值會自增1,同一個線程多次獲取鎖,就會多次+1,這就是可重入的概念
  • 解鎖也是對state值自減1,一直到0,此線程對鎖釋放。
public class LockExample {

    static int count = 0;
    static ReentrantLock lock = new ReentrantLock();

    public static void main(String[] args) throws InterruptedException {

        Runnable runnable = new Runnable() {
            @Override
            public void run() {

                try {
                    // 加鎖
                    lock.lock();
                    for (int i = 0; i < 10000; i++) {
                        count++;
                    }
                } catch (Exception e) {
                    e.printStackTrace();
                }
                finally {
                    // 解鎖,放在finally子句中,保證鎖的釋放
                    lock.unlock();
                }
            }
        };

        Thread thread1 = new Thread(runnable);
        Thread thread2 = new Thread(runnable);
        thread1.start();
        thread2.start();
        thread1.join();
        thread2.join();
        System.out.println("count: " + count);
    }
}

/**
 * 輸出
 * count: 20000
 */


2. Mysql行鎖、樂觀鎖

樂觀鎖即是無鎖思想,一般都是基於CAS思想實現的,而在MySQL中通過version版本號 + CAS無鎖形式實現樂觀鎖;例如T1,T2兩個事務一起併發執行時,當T2事務執行成功提交後,會對version+1,所以T1事務執行的version條件就無法成立了。

對sql語句進行加鎖以及狀態機的操作,也可以避免不同線程同時對count值訪問導致的數據不一致問題。

// 樂觀鎖 + 狀態機
update
    table_name
set
    version = version + 1,
    count = count + 1
where
    id = id AND version = version AND count = [修改前的count值];

// 行鎖 + 狀態機
 update
    table_name
set
    count = count + 1
where
    id = id AND count = [修改前的count值]
for update;


3. 細粒度的ReetrantLock鎖

如果我們直接採用ReentrantLock全局加鎖,那麼這種情況是一條線程獲取到鎖,整個程式全部的線程來到這裡都會阻塞;但是我們在項目裡面想要針對每個用戶在操作的時候實現互斥邏輯,所以我們需要更加細粒度的鎖。

public class LockExample {
    private static Map<String, Lock> lockMap = new ConcurrentHashMap<>();
    
    public static void lock(String userId) {
        // Map中添加細粒度的鎖資源
        lockMap.putIfAbsent(userId, new ReentrantLock());
        // 從容器中拿鎖並實現加鎖
        lockMap.get(userId).lock();
    }
    public static void unlock(String userId) {
        // 先從容器中拿鎖,確保鎖的存在
        Lock locak = lockMap.get(userId);
        // 釋放鎖
        lock.unlock();
    }
}


弊端:如果每一個用戶請求共用資源,就會加鎖一次,後續該用戶就沒有在登錄過平臺,但是鎖對象會一直存在於記憶體中,這等價於發生了記憶體泄漏,所以鎖的超時和淘汰機制機制需要實現。

4. 細粒度的Synchronized全局鎖

上面的加鎖機制使用到了鎖容器ConcurrentHashMap,該容易為了線程安全的情況,多以底層還是會用到Synchronized機制,所以有些情況,使用lockMap需要加上兩層鎖。

那麼我們是不是可以直接使用Synchronized來實現細粒度的鎖機制

public class LockExample {
    public static void syncFunc1(Long accountId) {
        String lock = new String(accountId + "").intern();

        synchronized (lock) {

            System.out.println(Thread.currentThread().getName() + "拿到鎖了");
            // 模擬業務耗時
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }

            System.out.println(Thread.currentThread().getName() + "釋放鎖了");
        }
    }

    public static void syncFunc2(Long accountId) {
        String lock = new String(accountId + "").intern();

        synchronized (lock) {

            System.out.println(Thread.currentThread().getName() + "拿到鎖了");
            // 模擬業務耗時
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }

            System.out.println(Thread.currentThread().getName() + "釋放鎖了");
        }
    }

    // 使用 Synchronized 來實現更加細粒度的鎖
    public static void main(String[] args) {
        new Thread(()-> syncFunc1(123456L), "Thread-1").start();
        new Thread(()-> syncFunc2(123456L), "Thread-2").start();
    }
}

/**
 * 列印
 * Thread-1拿到鎖了
 * Thread-1釋放鎖了
 * Thread-2拿到鎖了
 * Thread-2釋放鎖了
 */


  • 從代碼中我們發現實現加鎖的對象其實就是一個與用戶ID相關的一個字元串對象,這裡可能會有疑問,我每一個新的線程進來,new的都是一個新的字元串對象,只不過字元串內容一樣,怎麼能夠保證可以安全的鎖住共用資源呢;
  • 這其實需要歸功於後面的intern()函數的功能;
  • intern()函數用於在運行時將字元串添加到堆空間中的字元串常量池中,如果字元串已經存在,返回字元串常量池中的引用。

分散式架構下鎖的實現方案

核心問題:我們需要找到一個多個進程之間所有線程可見的區域來定義這個互斥量。

一個優秀的分散式鎖的實現方案應該滿足如下幾個特性:

  1. 分散式環境下,可以保證不同進程之間的線程互斥
  2. 同一時刻,同時只允許一條線程成功獲取到鎖資源
  3. 保證互斥量的地方需要保證高可用性
  4. 要保證可以高性能的獲取鎖和釋放鎖
  5. 可以支持同一線程的鎖重入性
  6. 具備合理的阻塞機制,競爭鎖失敗的線程要有相應的處理方案
  7. 支持非阻塞式的獲取鎖。獲取鎖失敗的線程可以直接返回
  8. 具備合理的鎖失效機制,如超時失效等,可以確保避免死鎖情況出現

Redis實現分散式鎖

  • redis屬於中間件,可獨立部署;
  • 對於不同的Java進程來說都是可見的,同時性能也非常可觀
  • 依賴與redis本身提供的指令setnx key value來實現分散式鎖;區別於普通set指令的是只有當key不存在時才會設置成功,key存在時會返回設置失敗

代碼實例:

// 扣庫存介面
@RequestMapping("/minusInventory")
public String minusInventory(Inventory inventory) {
    // 獲取鎖
    String lockKey = "lock-" + inventory.getInventoryId();
    int timeOut = 100;
    Boolean flag = stringRedisTemplate.opsForValue()
            .setIfAbsent(lockKey, "竹子-熊貓",timeOut,TimeUnit.SECONDS);
    // 加上過期時間,可以保證死鎖也會在一定時間內釋放鎖
    stringRedisTemplate.expire(lockKey,timeOut,TimeUnit.SECONDS);
    
    if(!flag){
        // 非阻塞式實現
        return "伺服器繁忙...請稍後重試!!!";
    }
    
    // ----只有獲取鎖成功才能執行下述的減庫存業務----        
    try{
        // 查詢庫存信息
        Inventory inventoryResult =
            inventoryService.selectByPrimaryKey(inventory.getInventoryId());
        
        if (inventoryResult.getShopCount() <= 0) {
            return "庫存不足,請聯繫賣家....";
        }
        
        // 扣減庫存
        inventoryResult.setShopCount(inventoryResult.getShopCount() - 1);
        int n = inventoryService.updateByPrimaryKeySelective(inventoryResult);
    } catch (Exception e) { // 確保業務出現異常也可以釋放鎖,避免死鎖
        // 釋放鎖
        stringRedisTemplate.delete(lockKey);
    }
    
    if (n > 0)
        return "埠-" + port + ",庫存扣減成功!!!";
    return "埠-" + port + ",庫存扣減失敗!!!";
}

作者:竹子愛熊貓
鏈接:https://juejin.cn/post/7038473714970656775


過期時間的合理性分析:

因為對於不同的業務,我們設置的過期時間的長短都會不一樣,太長了不合適,太短了也不合適;

所以我們想到的解決方案是設置一條子線程,給當前鎖資源續命。具體實現是,子線程間隔2-3s去查詢一次key是否過期,如果還沒有過期則代表業務線程還在執行業務,那麼則為該key的過期時間加上5s。

但是為了避免主線程意外死亡後,子線程會一直為其續命,造成“長生鎖”的現象,所以將子線程變為主(業務)線程的守護線程,這樣子線程就會跟著主線程一起死亡。

// 續命子線程
public class GuardThread extends Thread { 
    private static boolean flag = true;

    public GuardThread(String lockKey, 
        int timeOut, StringRedisTemplate stringRedisTemplate){
        ……
    }

    @Override
    public void run() {
        // 開啟迴圈續命
        while (flag){
            try {
                // 先休眠一半的時間
                Thread.sleep(timeOut / 2 * 1000);
            }catch (Exception e){
                e.printStackTrace();
            }
            // 時間過了一半之後再去續命
            // 先查看key是否過期
            Long expire = stringRedisTemplate.getExpire(
                lockKey, TimeUnit.SECONDS);
            // 如果過期了,代表主線程釋放了鎖
            if (expire <= 0){
                // 停止迴圈
                flag = false;
            }
            // 如果還未過期
            // 再為則續命一半的時間
            stringRedisTemplate.expire(lockKey,expire
                + timeOut/2,TimeUnit.SECONDS);
        }
    }
}


// 創建子線程為鎖續命
GuardThread guardThread = new GuardThread(lockKey,timeOut,stringRedisTemplate);
// 設置為當前 業務線程 的守護線程
guardThread.setDaemon(true);
guardThread.start();

作者:竹子愛熊貓 
鏈接:https://juejin.cn/post/7038473714970656775


Redis主從架構下鎖失效的問題

為了在開發過程保證Redis的高可用,會採用主從複製架構做讀寫分離,從而提升Redis的吞吐量以及可用性。但是如果一條線程在redis主節點上獲取鎖成功之後,主節點還沒有來得及複製給從節點就宕機了,此時另一條線程訪問redis就會在從節點上面訪問,同時也獲取鎖成功,這時候臨界資源的訪問就會出現安全性問題了。

解決辦法:

  • 紅鎖演算法(官方提出的解決方案):多台獨立的Redis同時寫入數據,在鎖失效時間之內,一半以上的機器寫成功則返回獲取鎖成功,失敗的時候釋放掉那些成功的機器上的鎖。但這種做法缺點是成本高需要獨立部署多台Redis節點。
  • 額外記錄鎖狀態:再額外通過其他獨立部署的中間件(比如DB)來記錄鎖狀態,在新線程獲取鎖之前需要先查詢DB中的鎖持有記錄,只要當鎖狀態為未持有時再嘗試獲取分散式鎖。但是這種情況缺點顯而易見,獲取鎖的過程實現難度複雜,性能開銷也非常大;另外還需要配合定時器功能更新DB中的鎖狀態,保證鎖的合理失效機制。
  • 使用Zookepper實現

Zookeeper實現分散式鎖

Zookeeper數據區別於redis的數據,數據是實時同步的,主節點寫入後需要一半以上的節點都寫入才會返回成功。所以如果像電商、教育等類型的項目追求高性能,可以放棄一定的穩定性,推薦使用redis實現;例如像金融、銀行、政府等類型的項目,追求高穩定性,可以犧牲一部分性能,推薦使用Zookeeper實現。

分散式鎖性能優化

上面加鎖確實解決了併發情況下線程安全的問題,但是我們面對100w個用戶同時去搶購1000個商品的場景該如何解決呢?

  • 可與將共用資源做一下提前預熱,分段分散存儲一份。搶購時間為下午15:00,提前再14:30左右將商品數量分成10份,並將每一塊數據進行分別加鎖,來防止併發異常。
  • 另外也需要在redis中寫入10個key,每一個新的線程進來先隨機的分配一把鎖,然後進行後面的減庫存邏輯,完成之後釋放鎖,以便之後的線程使用。
  • 這種分散式鎖的思想就是,將原先一把鎖就可以實現的多線程同步訪問共用資源的功能,為了提高瞬時情況下多線程的訪問速度,還需要保證併發安全的情況下一種實現方式。

參考文章:

  1. https://juejin.cn/post/7236213437800890423

  2. https://juejin.cn/post/7038473714970656775

  3. https://tech.meituan.com/2019/12/05/aqs-theory-and-apply.html

作者:京東科技 焦澤斌

來源:京東雲開發者社區 轉載請註明來源


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 資料庫完整性包括正確性和相容性,DBMS通過提供約束條件機制、檢查方法和違約處理功能維護資料庫完整性,其中實體完整性通過主鍵確保唯一標識,參照實體性通過外鍵關聯,用戶定義完整性滿足特定應用需求,而觸發器和斷言提供事件驅動和複雜約束支持,共同構成資料庫保持一致性的關鍵機制。 ...
  • SQL(結構化查詢語言)的演變從IBM的SystemR開始,經過ANSI的標準化,近年來SQL標準變得更加豐富和複雜。SQL的特點包括綜合統一、高度非過程化、面向集合的操作方式以及提供多種使用方式的統一語法結構。在資料庫實例中,基本表獨立存在,而視圖是基本表導出的虛表,用於供人查看。資料庫模式結構包... ...
  • SQL ALTER TABLE 語句 SQL ALTER TABLE 語句用於在現有表中添加、刪除或修改列,也可用於添加和刪除各種約束。 ALTER TABLE - 添加列 要在表中添加列,請使用以下語法: ALTER TABLE 表名 ADD 列名 數據類型; 以下 SQL 向 "Customer ...
  • 本文分享自華為雲社區《GaussDB資料庫SQL系列-SQL與ETL淺談》,作者:Gauss松鼠會小助手2。 一、前言 在SQL語言中,ETL(抽取、轉換和載入)是一種用於將數據從源系統抽取到目標系統的過程。ETL過程通常包括三個階段:抽取(Extract)、轉換(Transform)和載入(Loa ...
  • 數據作為新時代重要的生產要素之一,數據資產化的相關工作正在提速。自今年10月1日起,中國資產評估協會制定的《數據資產評估指導意見》正式施行。同時,《企業數據資源相關會計處理暫行規定》近期轉為正式稿,也將於明年1月1日起施行。 《暫行規定》規定:企業使用的數據資源,符合《企業會計準則第6號——無形資產 ...
  • 解耦、削峰:傳統的方式上游發送數據下游需要實時接收,如果上游在某些業務場景:例如上午十點會流量激增至頂峰,那麼下游資源可能會扛不住壓力。但如果使用消息隊列,就可以將消息暫存在消息管道中,下游可以按照自己的速度逐步處理; ...
  • 大數據框架下,常用的數據更新策略有三種: COW: copy-on-write, 寫時複製; MOR: merge-on-read, 讀時合併; MOW: merge-on-write, 寫時合併; hudi等數據湖倉框架,常用的是前兩種實現數據更新。而Doris則主要用後兩種更新數據。 COW 在 ...
  • 資料庫關係模型是數據組織的核心,以關係為基礎,表達實體和實體關係。關係模型通過域、笛卡爾積、關係模式構建二維表,形成資料庫。完整性約束確保數據有效性,實體完整性、參照完整性和用戶定義完整性保證數據質量。關係操作包括基本操作和數據語言,而關係代數提供了強大的查詢手段。資料庫關係模型為信息管理提供了結構... ...
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...