Leetcode刷題第五周

来源:https://www.cnblogs.com/noviceprogrammeroo/archive/2022/12/04/16910305.html
-Advertisement-
Play Games

動態代理和責任鏈設計模式適用範圍廣,在Spring和MyBatis有著重要的應用,比如SpringAOP、Mybatis的插件技術,想要搞懂當中的技術原理必須掌握上面兩個設計模式。 代理模式可以理解為您要操作一個對象,但是要經過這個對象的“代理”對象去操作。就好似你在一家軟體公司做開發,客戶發現程式 ...


二叉樹:
種類:滿二叉樹、完全二叉樹、二叉搜索樹、平衡二叉搜索樹
存儲方式:鏈式存儲、線式存儲(順序存儲)
二叉數遍歷:深度優先搜索(前序、中序、後序):使用遞歸實現(實際用棧來實現)、迭代法(非遞歸的方式、棧),廣度優先搜索(層序遍歷):用隊列
遞歸三步走寫法:1、確定遞歸函數的參數和返回值。2、確定終止條件。3、確定單層遞歸的邏輯。
144、二叉樹的前序遍歷

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    // 方法一:遞歸法
    // public List<Integer> preorderTraversal(TreeNode root) {
    //     List<Integer> result = new ArrayList<>();
    //     preorder(root, result);
    //     return result;
    // }
    // public void preorder(TreeNode root, List<Integer> result){
    //     if(root == null){
    //         return;
    //     }
    //     result.add(root.val);
    //     preorder(root.left, result);
    //     preorder(root.right, result);
    // }
    // 方法二:非遞歸的方法
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while(!stack.isEmpty()){
            TreeNode cur = stack.pop();
            if(cur != null){
                result.add(cur.val);
                stack.push(cur.right);
                stack.push(cur.left);
            }else{
                continue;
            }
        }
        return result;
    }
// 方法三:統一風格的非遞歸
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        Stack<TreeNode> stack = new Stack<>();
        if(root != null){
            stack.push(root);
        }
        while(!stack.isEmpty()){
            if(stack.peek() != null){
                TreeNode cur = stack.pop();
                if(cur.right != null){
                    stack.push(cur.right);
                }
                if(cur.left != null){
                    stack.push(cur.left);
                }
                stack.push(cur);
                stack.push(null);
            }else{
                stack.pop();
                TreeNode cur = stack.pop();
                result.add(cur.val);
            }
        }
        return result;
    }
}

145、二叉樹的後序遍歷

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    // 方法一:遞歸法
    // public List<Integer> postorderTraversal(TreeNode root) {
    //     List<Integer> result = new ArrayList<>();
    //     postOrder(root, result);
    //     return result;
    // }
    // public void postOrder(TreeNode root, List<Integer> result){
    //     if(root == null){
    //         return;
    //     }
    //     postOrder(root.left, result);
    //     postOrder(root.right, result);
    //     result.add(root.val);
    // }
    // 方法二:非遞歸
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        if(root == null){
            return result;
        }
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while(!stack.isEmpty()){
            TreeNode cur = stack.pop();
            result.add(cur.val);
            if(cur.left != null){
                stack.push(cur.left);
            }
            if(cur.right != null){
                stack.push(cur.right);
            }
        }
        Collections.reverse(result);
        return result;
    }
// 方法三:統一風格的非遞歸
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        Stack<TreeNode> stack = new Stack<>();
        if(root != null){
            stack.push(root);
        }
        while(!stack.isEmpty()){
            if(stack.peek() != null){
                TreeNode cur = stack.pop();
                stack.push(cur);
                stack.push(null);
                if(cur.right != null){
                    stack.push(cur.right);
                }
                
                if(cur.left != null){
                    stack.push(cur.left);
                }
            }else{
                stack.pop();
                TreeNode cur = stack.pop();
                result.add(cur.val);
            }
        }
        return result;
    }
}

94、二叉樹的中序遍歷

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    // 方法一:遞歸法
    // public List<Integer> inorderTraversal(TreeNode root) {
    //     List<Integer> result = new ArrayList<>();
    //     infixOrder(root, result);
    //     return result;
    // }
    // public void infixOrder(TreeNode root, List<Integer> result){
    //     if(root == null){
    //         return;
    //     }
    //     infixOrder(root.left, result);
    //     result.add(root.val);
    //     infixOrder(root.right, result);
    // }
    // 方法二:非遞歸
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        if(root == null){
            return result;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode cur = root;
        while(cur != null || !stack.isEmpty()){
            if(cur != null){
                stack.push(cur);
                cur = cur.left;
            }else{
                cur = stack.pop();
                result.add(cur.val);
                cur = cur.right;
            }
        }
        return result;
    }
// 方法三:統一風格的非遞歸
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> result = new ArrayList<>();
        Stack<TreeNode> stack = new Stack<>();
        if(root != null){
            stack.push(root);
        }
        while(!stack.isEmpty()){
            if(stack.peek() != null){
                TreeNode cur = stack.pop();
                if(cur.right != null){
                    stack.push(cur.right);
                }
                stack.push(cur);
                stack.push(null);
                if(cur.left != null){
                    stack.push(cur.left);
                }
            }else{
                stack.pop();
                TreeNode cur = stack.pop();
                result.add(cur.val);
            }
        }
        return result;
    }
}

廣度優先搜索:層序遍歷
102、二叉樹的層序遍歷

class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> list = new ArrayList<List<Integer>>();
        Queue<TreeNode> queue = new LinkedList<>();
        int size = 0;
        if(root != null){
            queue.offer(root);
            size = 1;
        }
        while(!queue.isEmpty()){
            List<Integer> list1 = new ArrayList<>();
            while(size > 0){
                TreeNode cur = queue.poll();
                list1.add(cur.val);
                if(cur.left != null){
                    queue.offer(cur.left);
                }
                if(cur.right != null){
                    queue.offer(cur.right);
                }
                size--;
            }
            size = queue.size();
            list.add(list1);
        }
        return list;
        

    }
}

107、二叉樹的層序遍歷 II

class Solution {
    public List<List<Integer>> levelOrderBottom(TreeNode root) {
        List<List<Integer>> list = new ArrayList<>();
        Queue<TreeNode> queue = new LinkedList<>();
        int size = queue.size();
        if(root != null){
            queue.offer(root);
            size = queue.size();
        }
        while(!queue.isEmpty()){
            List<Integer> list1 = new ArrayList<>();
            while(size > 0){
                TreeNode cur = queue.poll();
                list1.add(cur.val);
                if(cur.left != null){
                    queue.offer(cur.left);
                }
                if(cur.right != null){
                    queue.offer(cur.right);
                }
                size--;
            }
            size = queue.size();
            list.add(list1);
        }
        Collections.reverse(list);
        return list;
    }

199、二叉樹的右視圖

class Solution {
    public List<Integer> rightSideView(TreeNode root) {
        List<Integer> resultList = new ArrayList<>();
        Deque<TreeNode> deque = new LinkedList<>();
        int size = deque.size();
        if(root != null){
            deque.offer(root);
            size = deque.size();
        }
        while(!deque.isEmpty()){
            TreeNode cur = deque.peekLast();
            resultList.add(cur.val);
            while(size > 0){
                cur = deque.poll();
                if(cur.left != null){
                    deque.offer(cur.left);
                }
                if(cur.right != null){
                    deque.offer(cur.right);
                }
                size--;
            }
            size = deque.size();
        }
        return resultList;
    }
}

637、二叉樹的層平均值

class Solution {
    public List<Double> averageOfLevels(TreeNode root) {
        List<Double> resultList =  new ArrayList<>();
        Queue<TreeNode> queue = new LinkedList<>();
        int size = queue.size();
        Double sum = 0.0;
        int count = 0;
        if(root != null){
            queue.offer(root);
            size = queue.size();
        }
        while(!queue.isEmpty()){
            count = size;
            while(size > 0){
                TreeNode cur = queue.poll();
                sum += cur.val;
                if(cur.left != null){
                    queue.offer(cur.left);
                }
                if(cur.right != null){
                    queue.offer(cur.right);
                }
                size--;
            }
            resultList.add(sum/count);
            sum = 0.0;
            size = queue.size();
        }
        return resultList;
    }
}

429、N 叉樹的層序遍歷

class Solution {
    public List<List<Integer>> levelOrder(Node root) {
        List<List<Integer>> resultList = new ArrayList<>();
        Queue<Node> queue = new LinkedList<>();
        int size = queue.size();
        if(root != null){
            queue.offer(root);
            size = queue.size();
        }
        while(!queue.isEmpty()){
            List<Integer> list = new ArrayList<>();
            while(size > 0){
                Node cur = queue.poll();
                list.add(cur.val);
                for(Node node: cur.children){
                    if(node != null){
                        queue.offer(node);
                    }
                }
                size--;
            }
            resultList.add(list);
            size = queue.size();
        }
        return resultList;
    }
}

515、在每個樹行中找最大值

class Solution {
    public List<Integer> largestValues(TreeNode root) {
        List<Integer> resultList = new ArrayList<>();
        Queue<TreeNode> queue = new LinkedList<>();
        int size = queue.size();
        if(root != null){
            queue.offer(root);
            size = queue.size();
        }
        int max = Integer.MIN_VALUE;
        while(!queue.isEmpty()){
            while(size > 0){
                TreeNode cur = queue.poll();
                max = max > cur.val ? max : cur.val;
                if(cur.left != null){
                    queue.offer(cur.left);
                }
                if(cur.right != null){
                    queue.offer(cur.right);
                }
                size--;
            }
            resultList.add(max);
            max = Integer.MIN_VALUE;
            size = queue.size();
        }
        return resultList;
    }
}

116

class Solution {
    public Node connect(Node root) {
        Queue<Node> queue = new LinkedList<>();
        int size = 0;
        if(root != null){
            queue.offer(root);
            size = queue.size();
        }
        while(!queue.isEmpty()){
            while(size > 0){
                Node temp = queue.poll();
                if(size > 1){
                    temp.next = queue.peek();
                }
                if(temp.left != null){
                    queue.offer(temp.left);
                }
                if(temp.right != null){
                    queue.offer(temp.right);
                }
                size--;
            }
            size = queue.size();
        }
        return root;
    }
}

117、填充每個節點的下一個右側節點指針 II

同上!
104、二叉樹的最大深度
![]
(https://img2022.cnblogs.com/blog/3018498/202211/3018498-20221121204402960-1570599807.png)

class Solution {
    public int maxDepth(TreeNode root) {
        return count(root, 0);

    }
    public int count(TreeNode root, int depth){
        if(root == null){
            return depth;
        }
        depth++;
        return Math.max(count(root.left, depth),count(root.right, depth));
    }
}

111、二叉樹的最小深度

class Solution {
    public int minDepth(TreeNode root) {
        Queue<TreeNode> queue = new LinkedList<>();
        int size = queue.size();
        int depth = 0;
        if(root != null){
            queue.offer(root);
            size = queue.size();
        }
        while(!queue.isEmpty()){
            depth++;
            while(size > 0){
                TreeNode cur = queue.poll();
                if(cur.left == null && cur.right == null){
                    return depth;
                }
                if(cur.left != null){
                    queue.offer(cur.left);
                }
                if(cur.right != null){
                    queue.offer(cur.right);
                }
                size--;
            }
            size = queue.size();
        }
        return depth;
    }
}

226、翻轉二叉樹

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    // 方法一:層次遍歷,廣度優先演算法
    // public TreeNode invertTree(TreeNode root) {
    //     Queue<TreeNode> queue = new LinkedList<>();
    //     int size = queue.size();
    //     if(root != null){
    //         queue.offer(root);
    //         size = queue.size();
    //     }
    //     while(!queue.isEmpty()){
    //         while(size > 0){
    //             TreeNode cur = queue.poll();
    //             if(cur.left != null){
    //                 queue.offer(cur.left);
    //             }
    //             if(cur.right != null){
    //                 queue.offer(cur.right);
    //             }
    //             swapChildren(cur);
    //             size--;
    //         }
    //         size = queue.size();
    //     }
    //     return root;
    // }
    // public void swapChildren(TreeNode cur){
    //     TreeNode temp = cur.left;
    //     cur.left = cur.right;
    //     cur.right = temp;
    // }
    // 方法二:遞歸法,中序
    // public TreeNode invertTree(TreeNode root) {
    //     if(root == null){
    //         return root;
    //     }
    //     invertTree(root.left);
    //     invertTree(root.right);
    //     swapChildren(root);
    //     return root;
    // }     
    // public void swapChildren(TreeNode cur){
    //     TreeNode temp = cur.left;
    //     cur.left = cur.right;
    //     cur.right = temp;
    // }
    // 方法三:迭代法:中序,統一風格
    public TreeNode invertTree(TreeNode root) {
        Stack<TreeNode> stack = new Stack<>();
        if(root != null){
            stack.push(root);
        }
        while(!stack.isEmpty()){
            if(stack.peek() != null){
                TreeNode cur = stack.pop();
                if(cur.right != null)
                stack.push(cur.right);
                if(cur.left != null)
                stack.push(cur.left);
                stack.push(cur);
                stack.push(null);
                swapChildren(cur);
            }else{
                stack.pop();
                stack.pop();
            }
        }
        return root;
    }     
    public void swapChildren(TreeNode cur){
        TreeNode temp = cur.left;
        cur.left = cur.right;
        cur.right = temp;
    }
}

589、N 叉樹的前序遍歷

class Solution {
    // 方法一:遞歸
    // public List<Integer> resultList = new ArrayList<>();
    // public List<Integer> preorder(Node root) {
    //     if(root == null){
    //         return resultList;
    //     }
    //     resultList.add(root.val);
    //     for(Node node : root.children){
    //         preorder(node);
    //     }
    //     return resultList;
    // }
    // 方法二:迭代,統一風格
    public List<Integer> preorder(Node root) {
        List<Integer> resultList = new ArrayList<>();
        Stack<Node> stack = new Stack<>();
        if(root != null){
            stack.push(root);
        }
        while(!stack.isEmpty()){
            if(stack.peek() != null){
                Node cur = stack.pop();
                List<Node> list = new ArrayList<>();
                list = cur.children;
                for(int i = list.size() - 1; i >= 0; i--){
                    if(list.get(i) != null){
                        stack.push(list.get(i));
                    }
                }
                stack.push(cur);
                stack.push(null);
            }else{
                stack.pop();
                Node cur = stack.pop();
                resultList.add(cur.val);
            }
        }
        return resultList;
    }
}

590、N 叉樹的後序遍歷

101、對稱二叉樹

class Solution {
    // 方法一:遞歸,後序遍歷
    // public boolean isSymmetric(TreeNode root) {
    //     return compare(root.left, root.right);
    // }
    // public boolean compare(TreeNode left, TreeNode right){
    //     if(left == null && right != null){
    //         return false;
    //     }
    //     if(right == null && left != null){
    //         return false;
    //     }
    //     if(right == null && left == null){
    //         return true;
    //     }
    //     if(left.val != right.val){
    //         return false;
    //     }
    //     boolean resultLeft = compare(left.left, right.right);
    //     boolean resultRight = compare(left.right, right.left);
    //     return resultLeft && resultRight;
    // }
    // 方法二:迭代
    public boolean isSymmetric(TreeNode root) {
        Deque<TreeNode> deque = new LinkedList<>();
        deque.offerFirst(root.left);
        deque.offerLast(root.right);
        while(!deque.isEmpty()){
            TreeNode left = deque.pollFirst();
            TreeNode right = deque.pollLast();
            if(left == null && right == null){
                continue;
            }
            if(left == null && right != null){
                return false;
            }
            if(left != null && right == null){
                return false;
            }
            if(left.val != right.val){
                return false;
            }
            deque.offerFirst(left.left);
            deque.offerFirst(left.right);
            deque.offerLast(right.right);
            deque.offerLast(right.left);
        }
        return true;
    }
}

559、N 叉樹的最大深度

class Solution {
    public int maxDepth(Node root) {
        return preOrder(root);
    }
    public int preOrder(Node root){
        if(root == null){
            return 0;
        }
        int depth = 0;
        for(Node node : root.children){
            depth = Math.max(depth, preOrder(node));
        }
        return depth + 1;
    }
}

對稱二叉樹
二叉樹的最大深度
二叉樹的最小深度
完全二叉樹的節點個數
平衡二叉樹
二叉樹的所有路徑
404、左葉子之和

    public int sumOfLeftLeaves(TreeNode root) {
        if(root == null){
            return 0;
        }
        int left = sumOfLeftLeaves(root.left);
        int right = sumOfLeftLeaves(root.right);
        int val = 0;
        if(root.left != null && root.left.left == null &&root.left.right == null){
            val = root.left.val;
        }
        int sum = left + right + val;
        return sum;
    }
}

513找樹左下角的值

class Solution {
    public int findBottomLeftValue(TreeNode root) {
        Queue<TreeNode> queue = new LinkedList<>();
        int size  = queue.size();
        if(root != null){
            queue.offer(root);
            size = queue.size();
        }
        int find = 0;
        while(!queue.isEmpty()){
            Queue<TreeNode> result = new LinkedList<>();
            while(size > 0){
                TreeNode cur = queue.poll();
                result.offer(cur);
                if(cur.left != null){
                    queue.offer(cur.left);
                }
                if(cur.right != null){
                    queue.offer(cur.right);
                }
                size--;
            }
            size = queue.size();
            find = result.peek().val;
        }
        return find;

    }
}

112、路徑總和

class Solution {
    public boolean hasPathSum(TreeNode root, int targetSum) {
        if(root == null){
            return false;
        }
        List<Integer> result = new ArrayList<>();
        List<Integer> temp = new ArrayList<>();
        pathSum(root, result, temp);
        return result.contains(targetSum);
    }
    public void pathSum(TreeNode root, List<Integer> result, List<Integer> temp){
        temp.add(root.val);
        if(root.left == null && root.right == null){
            int sum = 0;
            for(int i = 0; i < temp.size(); i++){
                sum += temp.get(i);
            }
            result.add(sum);
        }
        if(root.left != null){
            pathSum(root.left, result, temp);
            temp.remove(temp.size() - 1);
        }
        if(root.right != null){
            pathSum(root.right, result, temp);
            temp.remove(temp.size() - 1);
        }
    }
}

113、路徑總和 II

class Solution {
    public List<List<Integer>> pathSum(TreeNode root, int targetSum) {
        List<List<Integer>> result = new ArrayList<>();
        List<Integer> temp = new ArrayList<>();
        if(root == null){
            return result;
        }
        find(root, result, temp, targetSum);
        return result;
    }
    public void find(TreeNode root, List<List<Integer>> result, List<Integer> temp, int targetSum){
        temp.add(root.val);
        if(root.left == null && root.right == null){
            int sum = 0;
            for(int i = 0; i < temp.size(); i++){
                sum += temp.get(i);
            }
            if(sum == targetSum){
                result.add(new ArrayList<Integer>(temp));
            }
        }
        if(root.left != null){
            find(root.left, result, temp, targetSum);
            temp.remove(temp.size() - 1);
        }
        if(root.right != null){
            find(root.right, result, temp, targetSum);
            temp.remove(temp.size() - 1);
        }
    }
}

106、從中序與後序遍歷序列構造二叉樹

class Solution {
    public Map<Integer, Integer> map;
    public TreeNode buildTree(int[] inorder, int[] postorder) {
        map = new HashMap<>();
        for(int i = 0; i < inorder.length; i++){
            map.put(inorder[i], i);
        }
        return find(inorder, 0, inorder.length, postorder, 0, postorder.length);
    }
    public TreeNode find(int[] inorder, int inbegin, int inend, int[] postorder, int pobegin, int poend){
        if(inbegin >= inend || pobegin >= poend){
            return null;
        }
        int temp = map.get(postorder[poend - 1]);
        int len = temp - inbegin;
        TreeNode root = new TreeNode(inorder[temp]);
        root.left = find(inorder, inbegin, temp, postorder, pobegin, pobegin + len);
        root.right = find(inorder, temp + 1, inend, postorder, pobegin + len, poend - 1);
        return root;
    }
}

105、從前序與中序遍歷序列構造二叉樹

class Solution {
    public Map<Integer, Integer> map;
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        map = new HashMap<>();
        for(int i = 0; i < inorder.length; i++){
            map.put(inorder[i], i);
        }
        return find(inorder, 0, inorder.length, preorder, 0, preorder.length);
    }
    public TreeNode find(int[] inorder, int inbegin, int inend, int[] preorder, int prbegin, int prend){
        if(inbegin >= inend || prbegin >= prend){
            return null;
        }
        int temp = map.get(preorder[prbegin]);
        int len = temp - inbegin;
        TreeNode root = new TreeNode(inorder[temp]);
        root.left = find(inorder, inbegin, temp, preorder, prbegin + 1, prbegin + len + 1);
        root.right = find(inorder, temp + 1, inend, preorder, prbegin + len + 1, prend);
        return root;
    }
}

654、最大二叉樹

class Solution {
    public Map<Integer, Integer> map;
    public TreeNode constructMaximumBinaryTree(int[] nums) {
        map = new HashMap<>();
        for(int i = 0; i < nums.length; i++){
            map.put(nums[i], i);
        }
        return binaryTree(nums, 0, nums.length - 1);
    }
    public TreeNode binaryTree(int[] nums, int left, int right){
        int max = -1;
        for(int i = left; i <= right; i++){
            max = max > nums[i] ? max : nums[i];
        }
        if(max == -1){
            return null;
        }else{
            int index = map.get(max);
            TreeNode root = new TreeNode(max);
            root.left = binaryTree(nums, left, index - 1);
            root.right = binaryTree(nums, index + 1, right);
            return root;
        }
    }
}

617、合併二叉樹

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode result = new TreeNode();
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        // 前序遍歷,遞歸
        // if(root1 == null){
        //     return root2;
        // }
        // if(root2 == null){
        //     return root1;
        // }
        // root1.val += root2.val;
        // root1.left = mergeTrees(root1.left,root2.left);
        // root1.right = mergeTrees(root1.right,root2.right);
        // return root1;
        // 使用棧迭代
        // if(root1 == null){
        //     return root2;
        // }
        // if(root2 == null){
        //     return root1;
        // }
        // Stack<TreeNode> stack = new Stack<>();
        // stack.push(root1);
        // stack.push(root2);
        // while(!stack.isEmpty()){
        //     TreeNode cur2 = stack.pop();
        //     TreeNode cur1 = stack.pop();
        //     cur1.val += cur2.val;
        //     if(cur1.left != null && cur2.left != null){
        //         stack.push(cur1.left);
        //         stack.push(cur2.left);
        //     }else{
        //         if(cur1.left == null){
        //             cur1.left = cur2.left;
        //         }
        //     }
        //     if(cur1.right != null && cur2.right != null){
        //         stack.push(cur1.right);
        //         stack.push(cur2.right);
        //     }else{
        //         if(cur1.right == null){
        //             cur1.right = cur2.right;
        //         }
        //     }
        // }
        // return root1;
        // 使用隊列迭代
        if(root1 == null){
            return root2;
        }
        if(root2 == null){
            return root1;
        }
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root1);
        queue.offer(root2);
        while(!queue.isEmpty()){
            TreeNode cur1 = queue.poll();
            TreeNode cur2 = queue.poll();
            cur1.val += cur2.val;
            if(cur1.left != null && cur2.left != null){
                queue.offer(cur1.left);
                queue.offer(cur2.left);
            }else{
                if(cur1.left == null){
                    cur1.left = cur2.left;
                }
            }
            if(cur1.right != null && cur2.right != null){
                queue.offer(cur1.right);
                queue.offer(cur2.right);
            }else{
                if(cur1.right == null){
                    cur1.right = cur2.right;
                }
            }
        }
        return root1;
    }
}

700、二叉搜索樹中的搜索

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode searchBST(TreeNode root, int val) {
        // 遞歸
        // if(root == null){
        //     return null;
        // }
        // TreeNode result = new TreeNode();
        // if(root.val == val){
        //     result = root;
        // }else if(root.val < val){
        //     result = searchBST(root.right,val);
        // }else{
        //     result = searchBST(root.left,val);
        // }
        // return result;
        // 迭代
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while(!stack.isEmpty()){
            TreeNode cur = stack.pop();
            if(cur.val == val){
                return cur;
            }else if(cur.val < val){
                if(cur.right == null){
                    return null;
                }
                stack.push(cur.right);
            }else{
                if(cur.left == null){
                    return null;
                }
                stack.push(cur.left);
            }
        }
        return null;
    }
}

98、驗證二叉搜索樹

class Solution {
    public boolean isValidBST(TreeNode root) {
// 需要從底層往上傳遞判斷結果,所以採用後序遍歷
        if(root == null){
            return true;
        }
        return isValidBST1(root,Long.MIN_VALUE,Long.MAX_VALUE);
    }
    public boolean isValidBST1(TreeNode root,long left, long right){
        if(root == null){
            return true;
        }
        if(root != null && (root.val <= left || root.val >= right)){
            return false;
        }
        boolean leftFlag = isValidBST1(root.left,left,root.val);
        boolean rightFlag = isValidBST1(root.right,root.val,right);
        if(leftFlag == false || rightFlag == false){
            return false;
        }
        return leftFlag && rightFlag;
    }
}
[530](https://leetcode.cn/problems/minimum-absolute-difference-in-bst/)、二叉搜索樹的最小絕對差
![](https://img2023.cnblogs.com/blog/3018498/202212/3018498-20221202215454984-1454788751.png)

class Solution {
public int result = Integer.MAX_VALUE;
TreeNode pre;
public int getMinimumDifference(TreeNode root) {
if(root == null){
return result;
}
traversal(root);
return result;
}
public void traversal(TreeNode cur){
if(cur == null){
return;
}
traversal(cur.left);
if(pre != null){
result = Math.min(result, cur.val - pre.val);
}
pre = cur;
traversal(cur.right);
}
}

[501](https://leetcode.cn/problems/find-mode-in-binary-search-tree/)、二叉搜索樹中的眾數
![](https://img2023.cnblogs.com/blog/3018498/202212/3018498-20221202223705818-1461381444.png)

class Solution {
public int Maxcount;
public int count;
public List result;
public TreeNode pre;
public int[] findMode(TreeNode root) {
Maxcount = 0;
count = 0;
result = new ArrayList<>();
pre = null;
traversal(root);
int[] find = new int[result.size()];
for(int i = 0; i < result.size(); i++){
find[i] = result.get(i);
}
return find;
}
public void traversal(TreeNode root){
if(root == null){
return;
}
traversal(root.left);
if(pre == null || root.val != pre.val){
count = 1;
}else{
count++;
}
pre = root;
if(count > Maxcount){
result.clear();
result.add(root.val);
Maxcount = count;
}else if(count == Maxcount){
result.add(root.val);
}
traversal(root.right);
}
}

[236](https://leetcode.cn/problems/lowest-common-ancestor-of-a-binary-tree/)、二叉樹的最近公共祖先
![](https://img2023.cnblogs.com/blog/3018498/202212/3018498-20221204152338576-636682783.png)

class Solution {
public TreeNode result = null;
// public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
// // 1、後序遍歷,從下往上傳遞,從遇到p或q開始,往上傳遞true,當某個節點也葉子節點都為true時,找到最近工祖先
// // 遞歸
// postOrder(root,p.val,q.val);
// return result;
// }
// public boolean postOrder(TreeNode root, int p, int q){
// if(root == null){
// return false;
// }
// boolean leftFlag = postOrder(root.left,p,q);
// boolean rightFlag = postOrder(root.right,p,q);
// if(leftFlag && rightFlag){
// result = root;
// return true;
// }
// if((root.val == q || root.val == p) && (leftFlag || rightFlag)){
// result = root;
// return true;
// }
// if(root.val == q || root.val == p){
// return true;
// }
// if(leftFlag || rightFlag){
// return true;
// }
// return false;
// }
}

[235](https://leetcode.cn/problems/lowest-common-ancestor-of-a-binary-search-tree/)、二叉搜索樹的最近公共祖先
![](https://img2023.cnblogs.com/blog/3018498/202212/3018498-20221204163504891-1656302655.png)

class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
int left = Math.min(p.val,q.val);
int right = Math.max(p.val,q.val);
return infixTravesal(root,left,right);
}
public TreeNode infixTravesal(TreeNode root,int left,int right){
if(root == null){
return root;
}
if(root.val >= left && root.val <= right){
return root;
}
TreeNode tempLeft = infixTravesal(root.left,left,right);
TreeNode tempRight = infixTravesal(root.right,left,right);
if(tempLeft != null){
return tempLeft;
}else if(tempRight != null){
return tempRight;
}else{
return null;
}
}
}

[701](https://leetcode.cn/problems/insert-into-a-binary-search-tree/)、二叉搜索樹中的插入操作
![](https://img2023.cnblogs.com/blog/3018498/202212/3018498-20221204163818163-1430411494.png)

class Solution {
public TreeNode insertIntoBST(TreeNode root, int val) {
if(root == null){
return new TreeNode(val);
}
TreeNode result = root;
travesal(root,val);
return result;
}
public void travesal(TreeNode root, int val){
if(root == null){
return;
}
if(root.val < val){
if(root.right == null){
root.right = new TreeNode(val);
return;
}else{
travesal(root.right,val);
}
}else{
if(root.val > val && root.left == null){
root.left = new TreeNode(val);
return;
}else{
travesal(root.left,val);
}
}
}
}

[450](https://leetcode.cn/problems/delete-node-in-a-bst/)、刪除二叉搜索樹中的節點
![](https://img2023.cnblogs.com/blog/3018498/202212/3018498-20221204165910667-1246243087.png)

class Solution {
public TreeNode deleteNode(TreeNode root, int key) {
root = delete(root,key);
return root;
}
public TreeNode delete(TreeNode root,int key){
if(root == null){
return null;
}
if(root.val < key){
root.right = delete(root.right,key);
}else if(root.val > key){
root.left = delete(root.left,key);
}else{
if(root.left == null)
return root.right;
if(root.right == null)
return root.left;
TreeNode cur = root.right;
TreeNode temp = root.right;
while(temp.left != null){
temp = temp.left;
}
temp.left = root.left;
return cur;
}
return root;

}

}

[669](https://leetcode.cn/problems/trim-a-binary-search-tree/)、修剪二叉搜索樹
![](https://img2023.cnblogs.com/blog/3018498/202212/3018498-20221204181455032-1469995914.png)

class Solution {
public TreeNode trimBST(TreeNode root, int low, int high) {
if(root == null){
return null;
}
if(root.val < low){
return trimBST(root.right,low,high);
}
if(root.val > high){
return trimBST(root.left,low,high);
}
root.left = trimBST(root.left,low,high);
root.right = trimBST(root.right,low,high);
return root;
}
}

[108](https://leetcode.cn/problems/convert-sorted-array-to-binary-search-tree/)、將有序數組轉換為二叉搜索樹
![](https://img2023.cnblogs.com/blog/3018498/202212/3018498-20221204190903392-1437758199.png)

class Solution {
public TreeNode sortedArrayToBST(int[] nums) {
return travesal(nums,0,nums.length - 1);
}
public TreeNode travesal(int[] nums, int left, int right){
if(left > right){
return null;
}
int mid = left + (right - left)/2;
TreeNode result = new TreeNode(nums[mid]);
result.left = travesal(nums,left,mid - 1);
result.right = travesal(nums,mid + 1, right);
return result;
}
}

[538](https://leetcode.cn/problems/convert-bst-to-greater-tree/)、把二叉搜索樹轉換為累加樹
![](https://img2023.cnblogs.com/blog/3018498/202212/3018498-20221204193044698-259079969.png)

class Solution {
public int sum = 0;
public TreeNode convertBST(TreeNode root) {
if(root == null){
return null;
}
convertBST(root.right);
root.val += sum;
sum = root.val;
convertBST(root.left);

    return root;
}

}


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 在如今,很多網頁已經可以手動切換明亮模式和黑暗模式,網頁的主題切換已經成為了一個常用的需求,因此,本文將從常見框架的處理方式總結一些相關的操作,並探究其本質。 ...
  • Nginx (Engine X)是一個輕量級的Web伺服器 、反向代理伺服器及電子郵件(IMAP/POP3)代理伺服器、高性能的HTTP伺服器,它以高穩定性、豐富的功能集、示例配置文件和低系統資源的消耗而聞名。 ...
  • 如果你接手了別人的代碼工程,卻發現對方使用的 python 版本或者依賴庫都和你的環境不相容時,怎麼辦?打算卸掉自己原來的那一套環境再重來嗎?真麻煩! ...
  • 該筆記整理至尚矽谷周陽老師的SpringCloud課程SpringCloud Alibaba篇 SpringCloud Alibaba入門簡介 Spring Cloud Netflix 項目進入維護模式,Spring Cloud Netflix 將不再開發新的組件。Spring Cloud 版本迭代 ...
  • ###Http Http (超文本輸出協議) 是一種分散式、協作式和超媒體信息系統的應用層協議,它通常運行在TCP之上,網際網路應用最廣泛的便是Http協議,所有www都遵循這個標準。主要用於Web 瀏覽器與 Web 伺服器之間的通信而設計的,但也可以用於其他目的,是一個基於 TCP/IP 通信協議來 ...
  • 隨著跨境獨立站的流行,中英雙語的公司官網越來越受到重視。 此項目是基於開源CMS開發出的中英文雙語外貿企業網站內容管理系統,命名HanCMS HanCMS 漢CMS中英雙語多語種外貿網站系統,是一個輕量級的網站系統,訪問速度極快,使用簡單。程式代碼簡潔嚴謹,完全免費開源。可用於建設各種類型的中英文網 ...
  • 原文: JDK中內嵌JS引擎介紹及使用 - Stars-One的雜貨小窩 最近研究閱讀這個APP,其主要功能就是通過一個個書源,從而實現移動端閱讀的體驗 比如說某些線上小說閱讀網站,會加上相應的廣告,從而影響用戶閱讀體驗,於是閱讀這個APP就是做了類似凈化閱讀體驗 但是小說閱讀網站千千萬萬,如果去適 ...
  • 概述 ZYNQ分為PS和PL兩部分,PS端即ARM,PL即FPGA。在使用ZYNQ的時候不免需要PS和PL端進行通信。大多是情況下PS作為主端,PL作為從端,通過AXI匯流排實現PS-PL端的通信。本文主要介紹PL(即FPGA)如何配置的。 Block Design創建 1.點擊Create Bloc ...
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...