大數據Hadoop之——Spark Streaming原理

来源:https://www.cnblogs.com/liugp/archive/2022/05/02/16215325.html
-Advertisement-
Play Games

一、概述 Spark Streaming是對核心Spark API的一個擴展,它能夠實現對實時數據流的流式處理,並具有很好的可擴展性、高吞吐量和容錯性。Spark Streaming支持從多種數據源提取數據,如:Kafka、Flume、Twitter、ZeroMQ、Kinesis以及TCP套接字,並 ...


目錄

一、概述

Spark Streaming是對核心Spark API的一個擴展,它能夠實現對實時數據流的流式處理,並具有很好的可擴展性、高吞吐量和容錯性。Spark Streaming支持從多種數據源提取數據,如:Kafka、Flume、Twitter、ZeroMQ、Kinesis以及TCP套接字,並且可以提供一些高級API來表達複雜的處理演算法,如:map、reduce、join和window等。最後,Spark Streaming支持將處理完的數據推送到文件系統、資料庫或者實時儀錶盤中展示。實際上,你完全可以將Spark的機器學習(machine learning) 和 圖計算(graph processing)的演算法應用於Spark Streaming的數據流當中。

二、Spark Streaming基本原理

1)官方文檔對Spark Streaming的原理解讀

Spark Streaming從實時數據流接入數據,再將其劃分為一個個小批量供後續Spark engine處理,所以實際上,Spark Streaming是按一個個小批量來處理數據流的。下圖展示了Spark Streaming的內部工作原理:

Spark Streaming為這種持續的數據流提供了的一個高級抽象,即:discretized stream(離散數據流)或者叫DStream。DStream既可以從輸入數據源創建得來,如:Kafka、Flume或者Kinesis,也可以從其他DStream經一些運算元操作得到。其實在內部,一個DStream就是包含了一系列RDDs

2)框架執行流程

下麵將從更細粒度架構角度看Spark Streaming的執行原理,這裡先回顧一下Spark框架執行流程。

Spark計算平臺有兩個重要角色,Driver和executor,不論是Standlone模式還是Yarn模式,都是Driver充當Application的master角色,負責任務執行計劃生成和任務分發及調度;executor充當worker角色,負責實際執行任務的task,計算的結果返回Driver

下圖是Driver和Ececutor的執行流程。

Driver負責生成邏輯查詢計劃、物理查詢計劃和把任務派發給executor,executor接受任務後進行處理,離線計算也是按這個流程進行。

  • DAGScheduler:負責將Task拆分成不同Stage的具有依賴關係(包含RDD的依賴關係)的多批任務,然後提交給TaskScheduler進行具體處理。
  • TaskScheduler:負責實際每個具體Task的物理調度執行。

下麵看Spark Streaming實時計算的執行流程:

  • 從整體上看,實時計算與離線計算一樣,主要組件是Driver和Executor的。不同的是多了數據採集和數據按時間分片過程,數據採集依賴外部數據源,這裡用MessageQueue表示,數據分片則依靠內部一個時鐘Clock,按batch interval來定時對數據分片,然後把每一個batch interval內的數據提交處理。
  • Executor從MessageQueue獲取數據並交給BlockManager管理,然後把元數據信息BlockID返給driver的Receiver Tracker,driver端的Job Jenerator對一個batch的數據生成JobSet,最後把作業執行計劃傳遞給executor處理。

三、Spark Streaming核心API

SparkStreaming完整的API包括StreamingContext、DStream輸入、DStream上的各種操作和動作、DStream輸出、視窗操作等。

1)StreamingContext

為了初始化Spark Streaming程式,必須創建一個StreamingContext對象,該對象是Spark Streaming所有流操作的主要入口。一個StreamingContext對象可以用SparkConf對象創建:

import org.apache.spark.*;
import org.apache.spark.api.java.function.*;
import org.apache.spark.streaming.*;
import org.apache.spark.streaming.api.java.*;
import scala.Tuple2;

// Create a local StreamingContext with two working thread and batch interval of 1 second
SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount");
JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1));

2)DStream輸入

DStream輸入表示從數據源獲取的原始數據流。每個輸入流DStream和一個接收器(receiver)對象相關聯,這個Receiver從源中獲取數據,並將數據存入記憶體中用於處理。

Spark Streaming有兩類數據源:

  • 基本源(basic source):在StreamingContext API中直接可用的源頭,例如文件系統、套接字連接、Akka的actor等。
  • 高級源(advanced source):包括 Kafka、Flume、Kinesis、Tiwtter等,他們需要通過額外的類來使用。

3)DStream的轉換

和RDD類似,transformation用來對輸入DStreams的數據進行轉換、修改等各種操作,當然,DStream也支持很多在Spark RDD的transformation運算元。

轉換操作(transformation) 含義(Meaning)
map(func) 利用函數func處理原DStream的每個元素,返回一個新的DStream.
flatMap(func) 與map相似,但是每個輸入項可用被映射0個或多個輸出項
filter(func) 返回一個新的DStream,它僅包含源DStream中滿足函數func的項
repartition(numPartitions) 通過創建更多或更少的的partition改變這個DStream的並行級別(level ofparallelism)
union(otherStream) 返回一個新的DStream,它包含源DStream和otherStream的聯合元素
count() 通過計算源DStream中每個RDD的元素數量,返回一個包含單元素RDD的新DStream
reduce(func) 利用函數func聚集源DStream中每個RDD的元素,返回一個包含單元素RDD的新的DStream。函數應該是相關聯的,以使計算可以並行化
countByValue() 這個運算元應用於元素類型為K的DStream上,返回一個(Kjong)前的新DStreamo每個鍵的值是在原DStream的每個RDD的頻率
reduceByKey(func, [numTasks]) 當在一個由(K,V)對組成的DStream上調用這個運算元,返回一個新的由(K,V)對組成的DStream,每一個key的值均有給定的reduce函數聚集起來。註意:在預設情況下,這個運算元利用了 Spark預設的併發任務數去分組。可以用numTasks參數設置不同的任務數
join(otherStream, [numTasks]) 當應用於兩個DStream(一個包含(K,V)對,一個包含(K,W)對,返回一個包含(K,(V,W))對的新的 DStream
cogroup(otherStream, [numTasks]) 當應用於兩個DStream(一個包含(K,V)對,一個包含(K,W)對,返回一個包含(K,Seq[VJSeq[WN 的元組
transform(func) 通過對源DStream的每個RDD應用RDD-to-RDD函數,創建一個新的DStreamo這個可以在DStream中的任何RDD操作中使用
updateStateByKey(func) 利用給定的函數更新DStream狀態,返回一個新“state”的DStream

4)DStream的輸出

和RDD類似,Spark Streaming允許將DStream轉換後的結果發送到資料庫、文件系統等外部系統中。目前,定義了Spark Streaming的輸出操作:

轉換操作(transformation) 含義(Meaning)
print() 在運行流應用程式的驅動程式節點上列印數據流中每批數據的前十個元素。這對於開發和調試非常有用。Python API在Python API中稱為pprint()。
saveAsTextFiles(prefix, [suffix]) 將此數據流的內容另存為文本文件。每個批處理間隔的文件名基於首碼和尾碼生成:“prefix-TIME_IN_MS[.suffix]”。
saveAsObjectFiles(prefix, [suffix]) 將此數據流的內容另存為序列化Java對象的SequenceFile。每個批處理間隔的文件名基於首碼和尾碼生成:“prefix-TIME_IN_MS[.suffix]”。Python API這在Python API中不可用。
saveAsHadoopFiles(prefix, [suffix]) 將此數據流的內容另存為Hadoop文件。每個批處理間隔的文件名基於首碼和尾碼生成:“prefix-TIME_IN_MS[.suffix]”。Python API這在Python API中不可用。
foreachRDD(func) 對從流生成的每個RDD應用函數func的最通用的輸出運算符。此函數應將每個RDD中的數據推送到外部系統,例如將RDD保存到文件中,或通過網路將其寫入資料庫。請註意,函數func是在運行流應用程式的驅動程式進程中執行的,其中通常包含RDD操作,這些操作將強制計算流RDD。

5)視窗操作

Spark Streaming 還提供視窗計算,允許您在數據的滑動視窗上應用轉換。下圖說明瞭這個滑動視窗:

如圖所示,每次視窗滑過一個源 DStream 時,落入視窗內的源 RDD 被組合併操作以產生視窗化 DStream 的 RDD。在這種特定情況下,該操作應用於最後 3 個時間單位的數據,並滑動 2 個時間單位。這說明任何視窗操作都需要指定兩個參數。

  • windowLength:視窗的持續時間(圖中 3)。
  • slideInterval :執行視窗操作的間隔(圖中為 2)。
    一些常見的視窗操作如下。所有這些操作都採用上述兩個參數 - windowLength和slideInterval
轉換操作(transformation) 含義(Meaning)
window(windowLength, slideInterval) 返回一個新的 DStream,它是根據源 DStream 的視窗批次計算的。
countByWindow(windowLength, slideInterval) 返迴流中元素的滑動視窗計數。
reduceByWindow(func, windowLength, slideInterval) 返回一個新的單元素流,它是通過使用func在滑動間隔內聚合流中的元素而創建的。該函數應該是關聯的和可交換的,以便它可以被正確地並行計算。
reduceByKeyAndWindow(func, windowLength, slideInterval, [numTasks]) 當在 (K, V) 對的 DStream 上調用時,返回一個新的 (K, V) 對 DStream,其中每個鍵的值使用給定的 reduce 函數func 在滑動視窗中的批次上聚合。註意:預設情況下,這使用 Spark 的預設並行任務數(本地模式為 2,在集群模式下,數量由 config 屬性決定spark.default.parallelism)進行分組。您可以傳遞一個可選 numTasks參數來設置不同數量的任務。
reduceByKeyAndWindow(func, invFunc, windowLength, slideInterval, [numTasks]) reduceByKeyAndWindow()其中每個視窗的減少值是使用前一個視窗的減少值遞增計算的。這是通過減少進入滑動視窗的新數據,並“逆減少”離開視窗的舊數據來完成的。一個例子是在視窗滑動時“添加”和“減去”鍵的計數。但是,它只適用於“可逆歸約函數”,即那些具有相應“逆歸約”函數(作為參數invFunc)的歸約函數。跟reduceByKeyAndWindow一樣,reduce 任務的數量可通過可選參數進行配置。請註意,必須啟用檢查點才能使用此操作
countByValueAndWindow(windowLength, slideInterval, [numTasks]) 當在 (K, V) 對的 DStream 上調用時,返回一個新的 (K, Long) 對 DStream,其中每個鍵的值是其在滑動視窗內的頻率。與 in 一樣 reduceByKeyAndWindow,reduce 任務的數量可通過可選參數進行配置。

更多操作詳情,請參考官方文檔:https://spark.apache.org/docs/latest/streaming-programming-guide.html

四、Spark下一代實時計算框架Structured Streaming

1)簡介

從Spark 2.0開始,Spark Streaming引入了一套新的流計算編程模型:Structured Streaming,開發這套API的主要動因是自Spark 2.0之後,以RDD為核心的API逐步升級到Dataset/DataFrame上,而另一方面,以RDD為基礎的編程模型對開發人員的要求較高,需要有足夠的編程背景才能勝任Spark Streaming的編程工作,而新引入的Structured Streaming模型是把數據流當作一個沒有邊界的數據表來對待,這樣開發人員可以在流上使用Spark SQL進行流處理,這大大降低了流計算的編程門檻。

下圖為Structure Streaming邏輯數據結構圖:

這裡以wordcount為例的計算過程如下圖:

圖中Time橫軸是時間軸,隨著時間,在1、2、3秒分別輸入數據,進入wordcount演算法計算聚合,輸出結果。更對關於Structure Streaming可以參考官網:https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

2) Spark streaming 和 Spark Structured Streaming的對比

對比項 Spark Streaming Structured Streaming
流模型 Spark Streaming是spark最初的流處理框架,使用了微批的形式來進行流處理,微批終究是批。每一個批處理間隔的為一個批,也就是一個RDD,我們對RDD進行操作就可以源源不斷的接收、處理數據。 Spark 2.X出來的流框架,採用了無界表的概念,流數據相當於往一個表上連續追加行,流上的每一條數據都類似於將一行新數據添加到表中。
操作對象 Dtream編程介面是RDD 使用 DataFrame、DataSet 的編程介面,處理數據時可以使用Spark SQL中提供的方法
時延 接收到數據時間視窗,秒級 實時處理數據,毫秒級
可靠性 Checkpoint 機制 Checkpoint 機制
Sink 提供了 foreachRDD()方法,通過自己編程實現將每個批的數據寫出 提供了一些 sink(Console Sink、File Sink、Kafka Sink等),只要通過option配置就可以使用;對於需要自定義的Sink,提供了ForeachWriter的編程介面,實現相關方法就可以完成
Spark Streaming
  • Spark Streaming是spark最初的流處理框架,使用了微批的形式來進行流處理。

  • 提供了基於RDDs的Dstream API,每個時間間隔內的數據為一個RDD,源源不斷對RDD進行處理來實現流計算。

  • Spark Streaming採用微批的處理方法,微批終究是批。每一個批處理間隔的為一個批,也就是一個RDD,我們對RDD進行操作就可以源源不斷的接收、處理數據。

Spark Structured Streaming

  • Spark 2.X出來的流框架,採用了無界表的概念,流數據相當於往一個表上不斷追加行。

  • 基於Spark SQL引擎實現,可以使用大多數Spark SQL的function。

  • Structured Streaming將實時數據當做被連續追加的表。流上的每一條數據都類似於將一行新數據添加到表中。

3)對比其它實時計算框架

為了展示結構化流的獨特之處,下表將其與其他幾個系統進行了比較。正如我們所討論的,Structured Streaming 對首碼完整性的強大保證使其等同於批處理作業,並且易於集成到更大的應用程式中。此外,在 Spark 上構建可以與批處理和互動式查詢集成。

  • 從延遲看:Storm和Flink原生支持流計算,對每條記錄處理,毫秒級延遲,是真正的實時計算,對延遲要求較高的應用建議選擇這兩種。Spark Streaming的延遲是秒級。Flink是目前最火的實時計算引擎,也是公司用的最多的實時計算引擎,出來的晚,但是發展迅猛。

  • 從容錯看 :Spark Streaming和Flink都支持最高的exactly-once容錯級別,Storm會有記錄重覆計算的可能

  • 從吞吐量看 :Spark Streaming是小批處理,故吞吐量會相對更大。

  • 從成熟度看: Storm最成熟,Spark其次,Flink處於仍處於發展中,這三個項目都有公司生產使用,但畢竟開源項目,項目越不成熟,往往越要求公司大數據平臺研發水平。

  • 從整合性看:Storm與SQL、機器學習和圖計算的結合複雜性最高;而Spark和Flink都有生態圈內對應的SQL、機器學習和圖計算,與這些項目結合更容易。

【參考資料】


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 本文講講 Ubuntu 18 及以上版本配置 IP 的方法,為什麼它值得一講,因為以 Ubuntu 16 為首的版本的配置方法已經不適用了,如果你還不知道,那本文正好 get 一個新技能。 Ubuntu 18 之後版本配置方法 需要使用 netplan 工具。 對應配置文件: /etc/netpla ...
  • 文件和目錄 1. 文件系統 我們可以把一個磁碟分成一個或多個分區,每個分區包含一個文件系統,這個文件系統由很多柱面組成,而柱面中有一個非常重要的概念叫做 i 節點。 i 節點包含了文件的大部分信息,如文件類型,文件訪問許可權位,文件大小和指向文件數據的指針等,大多數信息都存在st_mode成員中,有兩 ...
  • MySQL學習(第一節自習課) 一. 軟體下載、安裝 下載地址:https://dev.mysql.com/downloads/installer/ 位置:mysql->installer->community1 離線安裝版本,不要選帶web路徑的是離線安裝版本。 安裝省略 進程名稱:mysqld. ...
  • 聲明 個人原創, 轉載需註明來源 https://www.cnblogs.com/milton/p/16216347.html 數據類產品 最近的項目需要接觸大數據處理相關的產品, 涉及了ETL, 數據挖掘和統計, 數據可視化等功能, 因此瞭解了一下這個行業的產品和工具. 最近看的產品主要是 Qua ...
  • Hbase Hbase是一種NoSql模式的資料庫,採用了列式存儲。而採用了列存儲天然具備以下優勢: 可只查涉及的列,且列可作為索引,相對高效 針對某一列的聚合及其方便 同一列的數據類型一致,方便壓縮 同時由於列式存儲將不同列分開存儲,也造成了讀取多列效率不高的問題 LSM Tree 說到HBase ...
  • 導讀: 近年來,知識圖譜在眾多行業場景被大量應用,例如推薦、醫療。為了構造儘可能完備的圖譜,知識圖譜的推理工作也成為學術屆和工業界的一個重要研究課題。來自Mila人工智慧實驗室的瞿錳博士,給大家分享了他們在圖譜推理任務方向的一個研究:基於邏輯規則的圖譜推理(RNNLogic: Learning Lo ...
  • 數據備份 1. 備份資料庫 使用 mysqldump 命令可以將資料庫中的數據備份成一個文本文件,表的結構和數據以 SQL 的形式將存儲生成的文本文件 mysqldump -u username -p dbname>BackupName.sql 其中,dbname 代表資料庫名稱,BackupNam ...
  • Cypher數據結構 Cypher的數據結構: 屬性類型, 複合類型和結構類型 屬性類型 屬性類型 Integer Float String: 'Hello', "World" Boolean: true, false, TRUE, FALSE 結構類型 結構類型 node: 表示一個節點, 由 i ...
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...