緩存穿透 緩存穿透是指查詢一個一定不存在的數據,由於緩存是不命中時被動寫的,並且出於容錯考慮,如果從存儲層查不到數據則不寫入緩存,這將導致這個不存在的數據每次請求都要到存儲層去查詢,失去了緩存的意義。在流量大時,可能DB就掛掉了,要是有人利用不存在的key頻繁攻擊我們的應用,這就是漏洞。 解決方案 ...
緩存穿透
緩存穿透是指查詢一個一定不存在的數據,由於緩存是不命中時被動寫的,並且出於容錯考慮,如果從存儲層查不到數據則不寫入緩存,這將導致這個不存在的數據每次請求都要到存儲層去查詢,失去了緩存的意義。在流量大時,可能DB就掛掉了,要是有人利用不存在的key頻繁攻擊我們的應用,這就是漏洞。
解決方案
有很多種方法可以有效地解決緩存穿透問題,最常見的則是採用布隆過濾器,將所有可能存在的數據哈希到一個足夠大的bitmap中,一個一定不存在的數據會被這個bitmap攔截掉,從而避免了對底層存儲系統的查詢壓力。另外也有一個更為簡單粗暴的方法,如果一個查詢返回的數據為空(不管是數據不存在,還是系統故障),我們仍然把這個空結果進行緩存,但它的過期時間會很短,最長不超過五分鐘。
緩存雪崩
緩存雪崩是指在我們設置緩存時採用了相同的過期時間,導致緩存在某一時刻同時失效,請求全部轉發到DB,DB瞬時壓力過重雪崩。
解決方案
緩存失效時的雪崩效應對底層系統的衝擊非常可怕。大多數系統設計者考慮用加鎖或者隊列的方式保證緩存的單線 程(進程)寫,從而避免失效時大量的併發請求落到底層存儲系統上。這裡分享一個簡單方案就是將緩存失效時間分散開,比如我們可以在原有的失效時間基礎上增加一個隨機值,比如1-5分鐘隨機,這樣每一個緩存的過期時間的重覆率就會降低,就很難引發集體失效的事件。
緩存擊穿
對於一些設置了過期時間的key,如果這些key可能會在某些時間點被超高併發地訪問,是一種非常“熱點”的數據,這個時候,需要考慮一個問題:緩存被“擊穿”的問題,這個和緩存雪崩的區別在於這裡針對某一key緩存,前者則是很多key。緩存在某個時間點過期的時候,恰好在這個時間點對這個Key有大量的併發請求過來,這些請求發現緩存過期一般都會從後端DB載入數據並回設到緩存,這個時候大併發的請求可能會瞬間把後端DB壓垮。
解決方案
使用互斥鎖(mutex key)
業界比較常用的做法,是使用mutex。簡單地來說,就是在緩存失效的時候(判斷拿出來的值為空),不是立即去load db,而是先使用緩存工具的某些帶成功操作返回值的操作(比如Redis的SETNX或者Memcache的ADD)去set一個mutex key,當操作返回成功時,再進行load db的操作並回設緩存;否則,就重試整個get緩存的方法。
public String get(key) { String value = redis.get(key); if (value == null) { //代表緩存值過期 //設置3min的超時,防止del操作失敗的時候,下次緩存過期一直不能load db String keynx = key.concat(":nx"); if (redis.setnx(keynx, 1, 3 * 60) == 1) { //代表設置成功 value = db.get(key); redis.set(key, value, expire_secs); redis.del(keynx); } else { //這個時候代表同時候的其他線程已經load db並回設到緩存了,這時候重試獲取緩存值即可 sleep(50); get(key); //重試 } } else { return value; } }