python求極值點主要用到scipy庫。 1. 首先可先選擇一個函數或者擬合一個函數,這裡選擇擬合數據:np.polyfit import pandas as pd import matplotlib.pyplot as plt import numpy as np from scipy impo ...
python求極值點主要用到scipy庫。
1. 首先可先選擇一個函數或者擬合一個函數,這裡選擇擬合數據:np.polyfit
import pandas as pd import matplotlib.pyplot as plt import numpy as np from scipy import signal #濾波等 xxx = np.arange(0, 1000) yyy = np.sin(xxx*np.pi/180) z1 = np.polyfit(xxx, yyy, 7) # 用7次多項式擬合 p1 = np.poly1d(z1) #多項式繫數 print(p1) # 在屏幕上列印擬合多項式 yvals=p1(xxx) plt.plot(xxx, yyy, '*',label='original values') plt.plot(xxx, yvals, 'r',label='polyfit values') plt.xlabel('x axis') plt.ylabel('y axis') plt.legend(loc=4) plt.title('polyfitting') plt.show()
得到的圖形是:
2. 求波峰值,也就是極大值,得到:signal.find_peaks
# 極值 num_peak_3 = signal.find_peaks(yvals, distance=10) #distance表極大值點的距離至少大於等於10個水平單位 print(num_peak_3[0]) print('the number of peaks is ' + str(len(num_peak_3[0]))) plt.plot(xxx, yyy, '*',label='original values') plt.plot(xxx, yvals, 'r',label='polyfit values') plt.xlabel('x axis') plt.ylabel('y axis') plt.legend(loc=4) plt.title('polyfitting') for ii in range(len(num_peak_3[0])): plt.plot(num_peak_3[0][ii], yvals[num_peak_3[0][ii]],'*',markersize=10) plt.show()
3. 在可導的情形下,可以求導來求極值點,同時得到極大值和極小值點:np.polyder
yyyd = np.polyder(p1,1) # 1表示一階導 print(yyyd)
此時:yyyd.r 即可就得導數為0的點,可以與上述的極大值點對應比較
4. 直接函數分別求極大值和極小值:signal.argrelextrema 函數
print(yvals[signal.argrelextrema(yvals, np.greater)]) #極大值的y軸, yvals為要求極值的序列 print(signal.argrelextrema(yvals, np.greater)) #極大值的x軸 peak_ind = signal.argrelextrema(yvals,np.greater)[0] #極大值點,改為np.less即可得到極小值點 plt.plot(xxx, yyy, '*',label='original values') plt.plot(xxx, yvals, 'r',label='polyfit values') plt.xlabel('x axis') plt.ylabel('y axis') plt.legend(loc=4) plt.title('polyfitting') plt.plot(signal.argrelextrema(yvals,np.greater)[0],yvals[signal.argrelextrema(yvals, np.greater)],'o', markersize=10) #極大值點 plt.plot(signal.argrelextrema(yvals,np.less)[0],yvals[signal.argrelextrema(yvals, np.less)],'+', markersize=10) #極小值點 plt.show()
## ----- end ------