如何實現在Windows上運行Linux程式,附示例代碼

来源:http://www.cnblogs.com/zkweb/archive/2017/05/15/6856879.html
-Advertisement-
Play Games

微軟在去年發佈了Bash On Windows, 這項技術允許在Windows上運行Linux程式, 我相信已經有很多文章解釋過Bash On Windows的原理, 而今天的這篇文章將會講解如何自己實現一個簡單的原生Linux程式運行器, 這個運行器在用戶層實現, 原理和Bash On Windo ...


微軟在去年發佈了Bash On Windows, 這項技術允許在Windows上運行Linux程式, 我相信已經有很多文章解釋過Bash On Windows的原理,
而今天的這篇文章將會講解如何自己實現一個簡單的原生Linux程式運行器, 這個運行器在用戶層實現, 原理和Bash On Windows不完全一樣,比較接近Linux上的Wine.

示常式序完整的代碼在github上, 地址是 https://github.com/303248153/HelloElfLoader

初步瞭解ELF格式

首先讓我們先瞭解什麼是原生Linux程式, 以下說明摘自維基百科

In computing, the Executable and Linkable Format (ELF, formerly named Extensible Linking Format), is a common standard file format for executable files, object code, shared libraries, and core dumps. First published in the specification for the application binary interface (ABI) of the Unix operating system version named System V Release 4 (SVR4),[2] and later in the Tool Interface Standard,[1] it was quickly accepted among different vendors of Unix systems. In 1999, it was chosen as the standard binary file format for Unix and Unix-like systems on x86 processors by the 86open project.

By design, ELF is flexible, extensible, and cross-platform, not bound to any given central processing unit (CPU) or instruction set architecture. This has allowed it to be adopted by many different operating systems on many different hardware platforms.

Linux的可執行文件格式採用了ELF格式, 而Windows採用了PE格式, 也就是我們經常使用的exe文件的格式.

ELF格式的結構如下

By Surueña - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2922583

大致上可以分為這些部分

  • ELF頭,在文件的最開頭,儲存了類型和版本等信息
  • 程式頭, 供程式運行時解釋器(interpreter)使用
  • 節頭, 供程式編譯時鏈接器(linker)使用, 運行時不需要讀節頭
  • 節內容, 不同的節作用都不一樣
    • .text 代碼節,保存了主要的程式代碼
    • .rodata 保存了只讀的數據,例如字元串(const char*)
    • .data 保存了可讀寫的數據,例如全局變數
    • 還有其他各種各樣的節

讓我們來實際看一下Linux可執行程式的樣子
以下的編譯環境是Ubuntu 16.04 x64 + gcc 5.4.0, 編譯環境不一樣可能會得出不同的結果

首先創建hello.c,寫入以下的代碼

#include <stdio.h>

int max(int x, int y) {
    return x > y ? x : y;
}

int main() {
    printf("max is %d\n", max(123, 321));
    printf("test many arguments %d %d %d %s %s %s %s %s %s\n", 1, 2, 3, "a", "b", "c", "d", "e", "f");
    return 100;
}

然後使用gcc編譯這份代碼

gcc hello.c

編譯完成後你可以看到hello.c旁邊多了一個a.out, 這就是linux的可執行文件了, 現在可以在linux上運行它

./a.out

你可以看到以下輸出

max is 321
test many arguments 1 2 3 a b c d e f

我們來看看a.out包含了什麼,解析ELF文件可以使用readelf命令

readelf -a ./a.out

可以看到輸出了以下的信息

ELF 頭:
  Magic:   7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 
  類別:                              ELF64
  數據:                              2 補碼,小端序 (little endian)
  版本:                              1 (current)
  OS/ABI:                            UNIX - System V
  ABI 版本:                          0
  類型:                              EXEC (可執行文件)
  系統架構:                          Advanced Micro Devices X86-64
  版本:                              0x1
  入口點地址:               0x400430
  程式頭起點:          64 (bytes into file)
  Start of section headers:          6648 (bytes into file)
  標誌:             0x0
  本頭的大小:       64 (位元組)
  程式頭大小:       56 (位元組)
  Number of program headers:         9
  節頭大小:         64 (位元組)
  節頭數量:         31
  字元串表索引節頭: 28

節頭:
  [號] 名稱              類型             地址              偏移量
       大小              全體大小          旗標   鏈接   信息   對齊
  [ 0]                   NULL             0000000000000000  00000000
       0000000000000000  0000000000000000           0     0     0
  [ 1] .interp           PROGBITS         0000000000400238  00000238
       000000000000001c  0000000000000000   A       0     0     1
  [ 2] .note.ABI-tag     NOTE             0000000000400254  00000254
       0000000000000020  0000000000000000   A       0     0     4
  [ 3] .note.gnu.build-i NOTE             0000000000400274  00000274
       0000000000000024  0000000000000000   A       0     0     4
  [ 4] .gnu.hash         GNU_HASH         0000000000400298  00000298
       000000000000001c  0000000000000000   A       5     0     8
  [ 5] .dynsym           DYNSYM           00000000004002b8  000002b8
       0000000000000060  0000000000000018   A       6     1     8
  [ 6] .dynstr           STRTAB           0000000000400318  00000318
       000000000000003f  0000000000000000   A       0     0     1
  [ 7] .gnu.version      VERSYM           0000000000400358  00000358
       0000000000000008  0000000000000002   A       5     0     2
  [ 8] .gnu.version_r    VERNEED          0000000000400360  00000360
       0000000000000020  0000000000000000   A       6     1     8
  [ 9] .rela.dyn         RELA             0000000000400380  00000380
       0000000000000018  0000000000000018   A       5     0     8
  [10] .rela.plt         RELA             0000000000400398  00000398
       0000000000000030  0000000000000018  AI       5    24     8
  [11] .init             PROGBITS         00000000004003c8  000003c8
       000000000000001a  0000000000000000  AX       0     0     4
  [12] .plt              PROGBITS         00000000004003f0  000003f0
       0000000000000030  0000000000000010  AX       0     0     16
  [13] .plt.got          PROGBITS         0000000000400420  00000420
       0000000000000008  0000000000000000  AX       0     0     8
  [14] .text             PROGBITS         0000000000400430  00000430
       00000000000001f2  0000000000000000  AX       0     0     16
  [15] .fini             PROGBITS         0000000000400624  00000624
       0000000000000009  0000000000000000  AX       0     0     4
  [16] .rodata           PROGBITS         0000000000400630  00000630
       0000000000000050  0000000000000000   A       0     0     8
  [17] .eh_frame_hdr     PROGBITS         0000000000400680  00000680
       000000000000003c  0000000000000000   A       0     0     4
  [18] .eh_frame         PROGBITS         00000000004006c0  000006c0
       0000000000000114  0000000000000000   A       0     0     8
  [19] .init_array       INIT_ARRAY       0000000000600e10  00000e10
       0000000000000008  0000000000000000  WA       0     0     8
  [20] .fini_array       FINI_ARRAY       0000000000600e18  00000e18
       0000000000000008  0000000000000000  WA       0     0     8
  [21] .jcr              PROGBITS         0000000000600e20  00000e20
       0000000000000008  0000000000000000  WA       0     0     8
  [22] .dynamic          DYNAMIC          0000000000600e28  00000e28
       00000000000001d0  0000000000000010  WA       6     0     8
  [23] .got              PROGBITS         0000000000600ff8  00000ff8
       0000000000000008  0000000000000008  WA       0     0     8
  [24] .got.plt          PROGBITS         0000000000601000  00001000
       0000000000000028  0000000000000008  WA       0     0     8
  [25] .data             PROGBITS         0000000000601028  00001028
       0000000000000010  0000000000000000  WA       0     0     8
  [26] .bss              NOBITS           0000000000601038  00001038
       0000000000000008  0000000000000000  WA       0     0     1
  [27] .comment          PROGBITS         0000000000000000  00001038
       0000000000000034  0000000000000001  MS       0     0     1
  [28] .shstrtab         STRTAB           0000000000000000  000018ea
       000000000000010c  0000000000000000           0     0     1
  [29] .symtab           SYMTAB           0000000000000000  00001070
       0000000000000660  0000000000000018          30    47     8
  [30] .strtab           STRTAB           0000000000000000  000016d0
       000000000000021a  0000000000000000           0     0     1
Key to Flags:
  W (write), A (alloc), X (execute), M (merge), S (strings), l (large)
  I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
  O (extra OS processing required) o (OS specific), p (processor specific)

There are no section groups in this file.

程式頭:
  Type           Offset             VirtAddr           PhysAddr
                 FileSiz            MemSiz              Flags  Align
  PHDR           0x0000000000000040 0x0000000000400040 0x0000000000400040
                 0x00000000000001f8 0x00000000000001f8  R E    8
  INTERP         0x0000000000000238 0x0000000000400238 0x0000000000400238
                 0x000000000000001c 0x000000000000001c  R      1
      [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
  LOAD           0x0000000000000000 0x0000000000400000 0x0000000000400000
                 0x00000000000007d4 0x00000000000007d4  R E    200000
  LOAD           0x0000000000000e10 0x0000000000600e10 0x0000000000600e10
                 0x0000000000000228 0x0000000000000230  RW     200000
  DYNAMIC        0x0000000000000e28 0x0000000000600e28 0x0000000000600e28
                 0x00000000000001d0 0x00000000000001d0  RW     8
  NOTE           0x0000000000000254 0x0000000000400254 0x0000000000400254
                 0x0000000000000044 0x0000000000000044  R      4
  GNU_EH_FRAME   0x0000000000000680 0x0000000000400680 0x0000000000400680
                 0x000000000000003c 0x000000000000003c  R      4
  GNU_STACK      0x0000000000000000 0x0000000000000000 0x0000000000000000
                 0x0000000000000000 0x0000000000000000  RW     10
  GNU_RELRO      0x0000000000000e10 0x0000000000600e10 0x0000000000600e10
                 0x00000000000001f0 0x00000000000001f0  R      1

 Section to Segment mapping:
  段節...
   00     
   01     .interp 
   02     .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .plt.got .text .fini .rodata .eh_frame_hdr .eh_frame 
   03     .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss 
   04     .dynamic 
   05     .note.ABI-tag .note.gnu.build-id 
   06     .eh_frame_hdr 
   07     
   08     .init_array .fini_array .jcr .dynamic .got 

Dynamic section at offset 0xe28 contains 24 entries:
  標記        類型                         名稱/值
 0x0000000000000001 (NEEDED)             共用庫:[libc.so.6]
 0x000000000000000c (INIT)               0x4003c8
 0x000000000000000d (FINI)               0x400624
 0x0000000000000019 (INIT_ARRAY)         0x600e10
 0x000000000000001b (INIT_ARRAYSZ)       8 (bytes)
 0x000000000000001a (FINI_ARRAY)         0x600e18
 0x000000000000001c (FINI_ARRAYSZ)       8 (bytes)
 0x000000006ffffef5 (GNU_HASH)           0x400298
 0x0000000000000005 (STRTAB)             0x400318
 0x0000000000000006 (SYMTAB)             0x4002b8
 0x000000000000000a (STRSZ)              63 (bytes)
 0x000000000000000b (SYMENT)             24 (bytes)
 0x0000000000000015 (DEBUG)              0x0
 0x0000000000000003 (PLTGOT)             0x601000
 0x0000000000000002 (PLTRELSZ)           48 (bytes)
 0x0000000000000014 (PLTREL)             RELA
 0x0000000000000017 (JMPREL)             0x400398
 0x0000000000000007 (RELA)               0x400380
 0x0000000000000008 (RELASZ)             24 (bytes)
 0x0000000000000009 (RELAENT)            24 (bytes)
 0x000000006ffffffe (VERNEED)            0x400360
 0x000000006fffffff (VERNEEDNUM)         1
 0x000000006ffffff0 (VERSYM)             0x400358
 0x0000000000000000 (NULL)               0x0

重定位節 '.rela.dyn' 位於偏移量 0x380 含有 1 個條目:
  偏移量          信息           類型           符號值        符號名稱 + 加數
000000600ff8  000300000006 R_X86_64_GLOB_DAT 0000000000000000 __gmon_start__ + 0

重定位節 '.rela.plt' 位於偏移量 0x398 含有 2 個條目:
  偏移量          信息           類型           符號值        符號名稱 + 加數
000000601018  000100000007 R_X86_64_JUMP_SLO 0000000000000000 printf@GLIBC_2.2.5 + 0
000000601020  000200000007 R_X86_64_JUMP_SLO 0000000000000000 __libc_start_main@GLIBC_2.2.5 + 0

The decoding of unwind sections for machine type Advanced Micro Devices X86-64 is not currently supported.

Symbol table '.dynsym' contains 4 entries:
   Num:    Value          Size Type    Bind   Vis      Ndx Name
     0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
     1: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND printf@GLIBC_2.2.5 (2)
     2: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND __libc_start_main@GLIBC_2.2.5 (2)
     3: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND __gmon_start__

Symbol table '.symtab' contains 68 entries:
   Num:    Value          Size Type    Bind   Vis      Ndx Name
     0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
     1: 0000000000400238     0 SECTION LOCAL  DEFAULT    1 
     2: 0000000000400254     0 SECTION LOCAL  DEFAULT    2 
     3: 0000000000400274     0 SECTION LOCAL  DEFAULT    3 
     4: 0000000000400298     0 SECTION LOCAL  DEFAULT    4 
     5: 00000000004002b8     0 SECTION LOCAL  DEFAULT    5 
     6: 0000000000400318     0 SECTION LOCAL  DEFAULT    6 
     7: 0000000000400358     0 SECTION LOCAL  DEFAULT    7 
     8: 0000000000400360     0 SECTION LOCAL  DEFAULT    8 
     9: 0000000000400380     0 SECTION LOCAL  DEFAULT    9 
    10: 0000000000400398     0 SECTION LOCAL  DEFAULT   10 
    11: 00000000004003c8     0 SECTION LOCAL  DEFAULT   11 
    12: 00000000004003f0     0 SECTION LOCAL  DEFAULT   12 
    13: 0000000000400420     0 SECTION LOCAL  DEFAULT   13 
    14: 0000000000400430     0 SECTION LOCAL  DEFAULT   14 
    15: 0000000000400624     0 SECTION LOCAL  DEFAULT   15 
    16: 0000000000400630     0 SECTION LOCAL  DEFAULT   16 
    17: 0000000000400680     0 SECTION LOCAL  DEFAULT   17 
    18: 00000000004006c0     0 SECTION LOCAL  DEFAULT   18 
    19: 0000000000600e10     0 SECTION LOCAL  DEFAULT   19 
    20: 0000000000600e18     0 SECTION LOCAL  DEFAULT   20 
    21: 0000000000600e20     0 SECTION LOCAL  DEFAULT   21 
    22: 0000000000600e28     0 SECTION LOCAL  DEFAULT   22 
    23: 0000000000600ff8     0 SECTION LOCAL  DEFAULT   23 
    24: 0000000000601000     0 SECTION LOCAL  DEFAULT   24 
    25: 0000000000601028     0 SECTION LOCAL  DEFAULT   25 
    26: 0000000000601038     0 SECTION LOCAL  DEFAULT   26 
    27: 0000000000000000     0 SECTION LOCAL  DEFAULT   27 
    28: 0000000000000000     0 FILE    LOCAL  DEFAULT  ABS crtstuff.c
    29: 0000000000600e20     0 OBJECT  LOCAL  DEFAULT   21 __JCR_LIST__
    30: 0000000000400460     0 FUNC    LOCAL  DEFAULT   14 deregister_tm_clones
    31: 00000000004004a0     0 FUNC    LOCAL  DEFAULT   14 register_tm_clones
    32: 00000000004004e0     0 FUNC    LOCAL  DEFAULT   14 __do_global_dtors_aux
    33: 0000000000601038     1 OBJECT  LOCAL  DEFAULT   26 completed.7585
    34: 0000000000600e18     0 OBJECT  LOCAL  DEFAULT   20 __do_global_dtors_aux_fin
    35: 0000000000400500     0 FUNC    LOCAL  DEFAULT   14 frame_dummy
    36: 0000000000600e10     0 OBJECT  LOCAL  DEFAULT   19 __frame_dummy_init_array_
    37: 0000000000000000     0 FILE    LOCAL  DEFAULT  ABS hello.c
    38: 0000000000000000     0 FILE    LOCAL  DEFAULT  ABS crtstuff.c
    39: 00000000004007d0     0 OBJECT  LOCAL  DEFAULT   18 __FRAME_END__
    40: 0000000000600e20     0 OBJECT  LOCAL  DEFAULT   21 __JCR_END__
    41: 0000000000000000     0 FILE    LOCAL  DEFAULT  ABS 
    42: 0000000000600e18     0 NOTYPE  LOCAL  DEFAULT   19 __init_array_end
    43: 0000000000600e28     0 OBJECT  LOCAL  DEFAULT   22 _DYNAMIC
    44: 0000000000600e10     0 NOTYPE  LOCAL  DEFAULT   19 __init_array_start
    45: 0000000000400680     0 NOTYPE  LOCAL  DEFAULT   17 __GNU_EH_FRAME_HDR
    46: 0000000000601000     0 OBJECT  LOCAL  DEFAULT   24 _GLOBAL_OFFSET_TABLE_
    47: 0000000000400620     2 FUNC    GLOBAL DEFAULT   14 __libc_csu_fini
    48: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND _ITM_deregisterTMCloneTab
    49: 0000000000601028     0 NOTYPE  WEAK   DEFAULT   25 data_start
    50: 0000000000601038     0 NOTYPE  GLOBAL DEFAULT   25 _edata
    51: 0000000000400624     0 FUNC    GLOBAL DEFAULT   15 _fini
    52: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND printf@@GLIBC_2.2.5
    53: 0000000000400526    22 FUNC    GLOBAL DEFAULT   14 max
    54: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND __libc_start_main@@GLIBC_
    55: 0000000000601028     0 NOTYPE  GLOBAL DEFAULT   25 __data_start
    56: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND __gmon_start__
    57: 0000000000601030     0 OBJECT  GLOBAL HIDDEN    25 __dso_handle
    58: 0000000000400630     4 OBJECT  GLOBAL DEFAULT   16 _IO_stdin_used
    59: 00000000004005b0   101 FUNC    GLOBAL DEFAULT   14 __libc_csu_init
    60: 0000000000601040     0 NOTYPE  GLOBAL DEFAULT   26 _end
    61: 0000000000400430    42 FUNC    GLOBAL DEFAULT   14 _start
    62: 0000000000601038     0 NOTYPE  GLOBAL DEFAULT   26 __bss_start
    63: 000000000040053c   109 FUNC    GLOBAL DEFAULT   14 main
    64: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND _Jv_RegisterClasses
    65: 0000000000601038     0 OBJECT  GLOBAL HIDDEN    25 __TMC_END__
    66: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND _ITM_registerTMCloneTable
    67: 00000000004003c8     0 FUNC    GLOBAL DEFAULT   11 _init

Version symbols section '.gnu.version' contains 4 entries:
 地址: 0000000000400358  Offset: 0x000358  Link: 5 (.dynsym)
  000:   0 (*本地*)       2 (GLIBC_2.2.5)   2 (GLIBC_2.2.5)   0 (*本地*)    

Version needs section '.gnu.version_r' contains 1 entries:
 地址:0x0000000000400360  Offset: 0x000360  Link: 6 (.dynstr)
  000000: 版本: 1  文件:libc.so.6  計數:1
  0x0010:名稱:GLIBC_2.2.5  標誌:無  版本:2

Displaying notes found at file offset 0x00000254 with length 0x00000020:
  Owner                 Data size   Description
  GNU                  0x00000010   NT_GNU_ABI_TAG (ABI version tag)
    OS: Linux, ABI: 2.6.32

Displaying notes found at file offset 0x00000274 with length 0x00000024:
  Owner                 Data size   Description
  GNU                  0x00000014   NT_GNU_BUILD_ID (unique build ID bitstring)
    Build ID: debd3d7912be860a432b5c685a6cff7fd9418528

從上面的信息中我們可以知道這個文件的類型是ELF64, 也就是64位的可執行程式, 並且有9個程式頭和31個節頭, 各個節的作用大家可以在網上找到資料, 這篇文章中只涉及到以下的節

  • .init 程式初始化的代碼
  • .rela.dyn 需要重定位的變數列表
  • .rela.plt 需要重定位的函數列表
  • .plt 調用動態鏈接函數的代碼
  • .text 保存了主要的程式代碼
  • .init 保存了程式的初始化代碼, 用於初始化全局變數等
  • .fini 保存了程式的終止代碼, 用於析構全局變數等
  • .rodata 保存了只讀的數據,例如字元串(const char*)
  • .data 保存了可讀寫的數據,例如全局變數
  • .dynsym 動態鏈接的符號表
  • .dynstr 動態鏈接的符號名稱字元串
  • .dynamic 動態鏈接所需要的信息,供程式運行時使用(不需要訪問節頭)

什麼是動態鏈接

上面的程式中調用了printf函數, 然而這個函數的實現並不在./a.out中, 那麼printf函數在哪裡, 又是怎麼被調用的?

printf函數的實現在glibc庫中, 也就是/lib/x86_64-linux-gnu/libc.so.6中, 在執行./a.out的時候會在glibc庫中找到這個函數併進行調用, 我們來看看這段代碼

執行以下命令反編譯./a.out

objdump -c -S ./a.out

我們可以看到以下的代碼

00000000004003f0 <printf@plt-0x10>:
  4003f0:   ff 35 12 0c 20 00       pushq  0x200c12(%rip)        # 601008 <_GLOBAL_OFFSET_TABLE_+0x8>
  4003f6:   ff 25 14 0c 20 00       jmpq   *0x200c14(%rip)        # 601010 <_GLOBAL_OFFSET_TABLE_+0x10>
  4003fc:   0f 1f 40 00             nopl   0x0(%rax)

0000000000400400 <printf@plt>:
  400400:   ff 25 12 0c 20 00       jmpq   *0x200c12(%rip)        # 601018 <_GLOBAL_OFFSET_TABLE_+0x18>
  400406:   68 00 00 00 00          pushq  $0x0
  40040b:   e9 e0 ff ff ff          jmpq   4003f0 <_init+0x28>

000000000040053c <main>:
  40053c:   55                      push   %rbp
  40053d:   48 89 e5                mov    %rsp,%rbp
  400540:   be 41 01 00 00          mov    $0x141,%esi
  400545:   bf 7b 00 00 00          mov    $0x7b,%edi
  40054a:   e8 d7 ff ff ff          callq  400526 <max>
  40054f:   89 c6                   mov    %eax,%esi
  400551:   bf 38 06 40 00          mov    $0x400638,%edi
  400556:   b8 00 00 00 00          mov    $0x0,%eax
  40055b:   e8 a0 fe ff ff          callq  400400 <printf@plt>

在這一段代碼中,我們可以看到調用printf會首先調用0x400400printf@plt
printf@plt會負責在運行時找到實際的printf函數並跳轉到該函數
在這裡實際的printf函數會保存在0x400406 + 0x200c12 = 0x601018

需要註意的是0x601018一開始並不會指向實際的printf函數,而是會指向0x400406, 為什麼會這樣? 因為Linux的可執行程式為了考慮性能,不會在一開始就解決所有動態連接的函數,而是選擇了延遲解決.
在上面第一次jmpq *0x200c12(%rip)會跳轉到下一條指令0x400406, 又會繼續跳轉到0x4003f0, 再跳轉到0x601010指向的地址, 0x601010指向的地址就是延遲解決的實現, 第一次延遲解決成功後, 0x601018就會指向實際的printf, 以後調用就會直接跳轉到實際的printf上.

程式入口點

Linux程式運行首先會從_start函數開始, 上面readelf中的入口點地址0x400430就是_start函數的地址,

0000000000400430 <_start>:
  400430:   31 ed                   xor    %ebp,%ebp
  400432:   49 89 d1                mov    %rdx,%r9
  400435:   5e                      pop    %rsi
  400436:   48 89 e2                mov    %rsp,%rdx
  400439:   48 83 e4 f0             and    $0xfffffffffffffff0,%rsp
  40043d:   50                      push   %rax
  40043e:   54                      push   %rsp
  40043f:   49 c7 c0 20 06 40 00    mov    $0x400620,%r8
  400446:   48 c7 c1 b0 05 40 00    mov    $0x4005b0,%rcx
  40044d:   48 c7 c7 3c 05 40 00    mov    $0x40053c,%rdi
  400454:   e8 b7 ff ff ff          callq  400410 <__libc_start_main@plt>
  400459:   f4                      hlt    
  40045a:   66 0f 1f 44 00 00       nopw   0x0(%rax,%rax,1)

接下來_start函數會調用__libc_start_main函數, __libc_start_main是libc庫中定義的初始化函數, 負責初始化全局變數和調用main函數等工作.

__libc_start_main函數還負責設置返回值和退出進程, 可以看到上面調用__libc_start_main後的指令是hlt, 這個指令永遠不會被執行.

實現Linux程式運行器

在擁有以上的知識後我們可以先構想以下的運行器需要做什麼.

因為x64的Windows和Linux程式使用的cpu指令集都是一樣的,我們可以直接執行彙編而不需要一個指令模擬器,
而且這次我打算在用戶層實現, 所以不能像Bash On Windows一樣模擬syscall, 這個運行器會像下圖一樣模擬libc庫的函數

這樣運行器需要做的事情有:

  • 解析ELF文件
  • 載入程式代碼到指定的記憶體地址
  • 載入數據到指定的記憶體地址
  • 提供動態鏈接的函數實現
  • 執行載入的程式代碼

這些工作會在以下的示常式序中一一實現, 完整的源代碼可以看文章頂部的鏈接

首先我們需要把ELF文件格式對應的代碼從binutils中複製過來, 它包含了ELF頭, 程式頭和相關的數據結構, 裡面用unsigned char[]是為了防止alignment, 這樣結構體可以直接從文件內容中轉換過來

ELFDefine.h:

#pragma once

namespace HelloElfLoader {
    // 以下內容複製自
    // https://github.com/aeste/binutils/blob/develop/elfcpp/elfcpp.h
    // https://github.com/aeste/binutils/blob/develop/include/elf/external.h

    // e_ident中各項的偏移值
    const int EI_MAG0 = 0;
    const int EI_MAG1 = 1;
    const int EI_MAG2 = 2;
    const int EI_MAG3 = 3;
    const int EI_CLASS = 4;
    const int EI_DATA = 5;
    const int EI_VERSION = 6;
    const int EI_OSABI = 7;
    const int EI_ABIVERSION = 8;
    const int EI_PAD = 9;
    const int EI_NIDENT = 16;

    // ELF文件類型
    enum {
        ELFCLASSNONE = 0,
        ELFCLASS32 = 1,
        ELFCLASS64 = 2
    };

    // ByteOrder
    enum {
        ELFDATANONE = 0,
        ELFDATA2LSB = 1,
        ELFDATA2MSB = 2
    };

    // 程式頭類型
    enum PT
    {
        PT_NULL = 0,
        PT_LOAD = 1,
        PT_DYNAMIC = 2,
        PT_INTERP = 3,
        PT_NOTE = 4,
        PT_SHLIB = 5,
        PT_PHDR = 6,
        PT_TLS = 7,
        PT_LOOS = 0x60000000,
        PT_HIOS = 0x6fffffff,
        PT_LOPROC = 0x70000000,
        PT_HIPROC = 0x7fffffff,
        // The remaining values are not in the standard.
        // Frame unwind information.
        PT_GNU_EH_FRAME = 0x6474e550,
        PT_SUNW_EH_FRAME = 0x6474e550,
        // Stack flags.
        PT_GNU_STACK = 0x6474e551,
        // Read only after relocation.
        PT_GNU_RELRO = 0x6474e552,
        // Platform architecture compatibility information
        PT_ARM_ARCHEXT = 0x70000000,
        // Exception unwind tables
        PT_ARM_EXIDX = 0x70000001
    };

    // 動態節類型
    enum DT
    {
        DT_NULL = 0,
        DT_NEEDED = 1,
        DT_PLTRELSZ = 2,
        DT_PLTGOT = 3,
        DT_HASH = 4,
        DT_STRTAB = 5,
        DT_SYMTAB = 6,
        DT_RELA = 7,
        DT_RELASZ = 8,
        DT_RELAENT = 9,
        DT_STRSZ = 10,
        DT_SYMENT = 11,
        DT_INIT = 12,
        DT_FINI = 13,
        DT_SONAME = 14,
        DT_RPATH = 15,
        DT_SYMBOLIC = 16,
        DT_REL = 17,
        DT_RELSZ = 18,
        DT_RELENT = 19,
        DT_PLTREL = 20,
        DT_DEBUG = 21,
        DT_TEXTREL = 22,
        DT_JMPREL = 23,
        DT_BIND_NOW = 24,
        DT_INIT_ARRAY = 25,
        DT_FINI_ARRAY = 26,
        DT_INIT_ARRAYSZ = 27,
        DT_FINI_ARRAYSZ = 28,
        DT_RUNPATH = 29,
        DT_FLAGS = 30,

        // This is used to mark a range of dynamic tags.  It is not really
        // a tag value.
        DT_ENCODING = 32,

        DT_PREINIT_ARRAY = 32,
        DT_PREINIT_ARRAYSZ = 33,
        DT_LOOS = 0x6000000d,
        DT_HIOS = 0x6ffff000,
        DT_LOPROC = 0x70000000,
        DT_HIPROC = 0x7fffffff,

        // The remaining values are extensions used by GNU or Solaris.
        DT_VALRNGLO = 0x6ffffd00,
        DT_GNU_PRELINKED = 0x6ffffdf5,
        DT_GNU_CONFLICTSZ = 0x6ffffdf6,
        DT_GNU_LIBLISTSZ = 0x6ffffdf7,
        DT_CHECKSUM = 0x6ffffdf8,
        DT_PLTPADSZ = 0x6ffffdf9,
        DT_MOVEENT = 0x6ffffdfa,
        DT_MOVESZ = 0x6ffffdfb,
        DT_FEATURE = 0x6ffffdfc,
        DT_POSFLAG_1 = 0x6ffffdfd,
        DT_SYMINSZ = 0x6ffffdfe,
        DT_SYMINENT = 0x6ffffdff,
        DT_VALRNGHI = 0x6ffffdff,

        DT_ADDRRNGLO = 0x6ffffe00,
        DT_GNU_HASH = 0x6ffffef5,
        DT_TLSDESC_PLT = 0x6ffffef6,
        DT_TLSDESC_GOT = 0x6ffffef7,
        DT_GNU_CONFLICT = 0x6ffffef8,
        DT_GNU_LIBLIST = 0x6ffffef9,
        DT_CONFIG = 0x6ffffefa,
        DT_DEPAUDIT = 0x6ffffefb,
        DT_AUDIT = 0x6ffffefc,
        DT_PLTPAD = 0x6ffffefd,
        DT_MOVETAB = 0x6ffffefe,
        DT_SYMINFO = 0x6ffffeff,
        DT_ADDRRNGHI = 0x6ffffeff,

        DT_RELACOUNT = 0x6ffffff9,
        DT_RELCOUNT = 0x6ffffffa,
        DT_FLAGS_1 = 0x6ffffffb,
        DT_VERDEF = 0x6ffffffc,
        DT_VERDEFNUM = 0x6ffffffd,
        DT_VERNEED = 0x6ffffffe,
        DT_VERNEEDNUM = 0x6fffffff,

        DT_VERSYM = 0x6ffffff0,

        // Specify the value of _GLOBAL_OFFSET_TABLE_.
        DT_PPC_GOT = 0x70000000,

        // Specify the start of the .glink section.
        DT_PPC64_GLINK = 0x70000000,

        // Specify the start and size of the .opd section.
        DT_PPC64_OPD = 0x70000001,
        DT_PPC64_OPDSZ = 0x70000002,

        // The index of an STT_SPARC_REGISTER symbol within the DT_SYMTAB
        // symbol table.  One dynamic entry exists for every STT_SPARC_REGISTER
        // symbol in the symbol table.
        DT_SPARC_REGISTER = 0x70000001,

        DT_AUXILIARY = 0x7ffffffd,
        DT_USED = 0x7ffffffe,
        DT_FILTER = 0x7fffffff
    };;

    // ELF頭的定義
    typedef struct {
        unsigned char   e_ident[16];        /* ELF "magic number" */
        unsigned char   e_type[2];      /* Identifies object file type */
        unsigned char   e_machine[2];       /* Specifies required architecture */
        unsigned char   e_version[4];       /* Identifies object file version */
        unsigned char   e_entry[8];     /* Entry point virtual address */
        unsigned char   e_phoff[8];     /* Program header table file offset */
        unsigned char   e_shoff[8];     /* Section header table file offset */
        unsigned char   e_flags[4];     /* Processor-specific flags */
        unsigned char   e_ehsize[2];        /* ELF header size in bytes */
        unsigned char   e_phentsize[2];     /* Program header table entry size */
        unsigned char   e_phnum[2];     /* Program header table entry count */
        unsigned char   e_shentsize[2];     /* Section header table entry size */
        unsigned char   e_shnum[2];     /* Section header table entry count */
        unsigned char   e_shstrndx[2];      /* Section header string table index */
    } Elf64_External_Ehdr;

    // 程式頭的定義
    typedef struct {
        unsigned char   p_type[4];      /* Identifies program segment type */
        unsigned char   p_flags[4];     /* Segment flags */
        unsigned char   p_offset[8];        /* Segment file offset */
        unsigned char   p_vaddr[8];     /* Segment virtual address */
        unsigned char   p_paddr[8];     /* Segment physical address */
        unsigned char   p_filesz[8];        /* Segment size in file */
        unsigned char   p_memsz[8];     /* Segment size in memory */
        unsigned char   p_align[8];     /* Segment alignment, file & memory */
    } Elf64_External_Phdr;

    // DYNAMIC類型的程式頭的內容定義
    typedef struct {
        unsigned char   d_tag[8];       /* entry tag value */
        union {
            unsigned char   d_val[8];
            unsigned char   d_ptr[8];
        } d_un;
    } Elf64_External_Dyn;

    // 動態鏈接的重定位記錄,部分系統會用Elf64_External_Rel
    typedef struct {
        unsigned char r_offset[8];  /* Location at which to apply the action */
        unsigned char   r_info[8];  /* index and type of relocation */
        unsigned char   r_addend[8];    /* Constant addend used to compute value */
    } Elf64_External_Rela;

    // 動態鏈接的符號信息
    typedef struct {
        unsigned char   st_name[4];     /* Symbol name, index in string tbl */
        unsigned char   st_info[1];     /* Type and binding attributes */
        unsigned char   st_other[1];        /* No defined meaning, 0 */
        unsigned char   st_shndx[2];        /* Associated section index */
        unsigned char   st_value[8];        /* Value of the symbol */
        unsigned char   st_size[8];     /* Associated symbol size */
    } Elf64_External_Sym;
}

接下來我們定義一個讀取和執行ELF文件的類, 這個類會在初始化時把文件載入到fileStream_, execute函數會負責執行

HelloElfLoader.h:

#pragma once
#include <string>
#include <fstream>

namespace HelloElfLoader {
    class Loader {
        std::ifstream fileStream_;

    public:
        Loader(const std::string& path);
        Loader(std::ifstream&& fileStream);
        void execute();
    };
}

構造函數如下, 也就是標準的c++打開文件的代碼

HelloElfLoader.cpp:

Loader::Loader(const std::string& path) :
    Loader(std::ifstream(path, std::ios::in | std::ios::binary)) {}

Loader::Loader(std::ifstream&& fileStream) :
    fileStream_(std::move(fileStream)) {
    if (!fileStream_) {
        throw std::runtime_error("open file failed");
    }
}

接下來將實現上面所說的步驟, 首先是解析ELF文件

void Loader::execute() {
    std::cout << "====== start loading elf ======" << std::endl;

    // 檢查當前運行程式是否64位
    if (sizeof(intptr_t) != sizeof(std::int64_t)) {
        throw std::runtime_error("please use x64 compile and run this program");
    }

    // 讀取ELF頭
    Elf64_External_Ehdr elfHeader = {};
    fileStream_.seekg(0);
    fileStream_.read(reinterpret_cast<char*>(&elfHeader), sizeof(elfHeader));

    // 檢查ELF頭,只支持64位且byte order是little endian的程式
    if (std::string(reinterpret_cast<char*>(elfHeader.e_ident), 4) != "\x7f\x45\x4c\x46") {
        throw std::runtime_error("magic not match");
    }
    else if (elfHeader.e_ident[EI_CLASS] != ELFCLASS64) {
        throw std::runtime_error("only support ELF64");
    }
    else if (elfHeader.e_ident[EI_DATA] != ELFDATA2LSB) {
        throw std::runtime_error("only support little endian");
    }

    // 獲取program table的信息
    std::uint32_t programTableOffset = *reinterpret_cast<std::uint32_t*>(elfHeader.e_phoff);
    std::uint16_t programTableEntrySize = *reinterpret_cast<std::uint16_t*>(elfHeader.e_phentsize);
    std::uint16_t programTableEntryNum = *reinterpret_cast<std::uint16_t*>(elfHeader.e_phnum);
    std::cout << "program table at: " << programTableOffset << ", "
        << programTableEntryNum << " x " << programTableEntrySize << std::endl;

    // 獲取section table的信息
    // section table只給linker用,loader中其實不需要訪問section table
    std::uint32_t sectionTableOffset = *reinterpret_cast<std::uint32_t*>(elfHeader.e_shoff);
    std::uint16_t sectionTableEntrySize = *reinterpret_cast<std::uint16_t*>(elfHeader.e_shentsize);
    std::uint16_t sectionTableEntryNum = *reinterpret_cast<std::uint16_t*>(elfHeader.e_shentsize);
    std::cout << "section table at: " << sectionTableOffset << ", "
        << sectionTableEntryNum << " x " << sectionTableEntrySize << std::endl;

ELF文件的的開始部分就是ELF頭,和Elf64_External_Ehdr結構體的結構相同, 我們可以讀到Elf64_External_Ehdr結構體中,
然後ELF頭包含了程式頭和節頭的偏移值, 我們可以預先獲取到這些參數

節頭在運行時不需要使用, 運行時需要遍歷程式頭

    // 準備動態鏈接的信息
    std::uint64_t jmpRelAddr = 0; // 重定位記錄的開始地址
    std::uint64_t pltRelType = 0; // 重定位記錄的類型 RELA或REL
    std::uint64_t pltRelSize = 0; // 重定位記錄的總大小
    std::uint64_t symTabAddr = 0; // 動態符號表的開始地址
    std::uint64_t strTabAddr = 0; // 動態符號名稱表的開始地址
    std::uint64_t strTabSize = 0; // 動態符號名稱表的總大小

    // 遍歷program hedaer
    std::vector<Elf64_External_Phdr> programHeaders;
    programHeaders.resize(programTableEntryNum);
    fileStream_.read(reinterpret_cast<char*>(programHeaders.data()), programTableEntryNum * programTableEntrySize);
    std::vector<std::shared_ptr<void>> loadedSegments;
    for (const auto& programHeader : programHeaders) {
        std::uint32_t type = *reinterpret_cast<const std::uint32_t*>(programHeader.p_type);
        if (type == PT_LOAD) {
            // 把文件內容(包含程式代碼和數據)載入到虛擬記憶體,這個示例不考慮地址衝突
            std::uint64_t fileOffset = *reinterpret_cast<const std::uint64_t*>(programHeader.p_offset);
            std::uint64_t fileSize = *reinterpret_cast<const std::uint64_t*>(programHeader.p_filesz);
            std::uint64_t virtAddr = *reinterpret_cast<const std::uint64_t*>(programHeader.p_vaddr);
            std::uint64_t memSize = *reinterpret_cast<const std::uint64_t*>(programHeader.p_memsz);
            if (memSize < fileSize) {
                throw std::runtime_error("invalid memsz in program header, it shouldn't less than filesz");
            }
            // 在指定的虛擬地址分配記憶體
            std::cout << std::hex << "allocate address at: 0x" << virtAddr <<
                " size: 0x" << memSize << std::dec << std::endl;
            void* addr = ::VirtualAlloc((void*)virtAddr, memSize, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
            if (addr == nullptr) {
                throw std::runtime_error("allocate memory at specific address failed");
            }
            loadedSegments.emplace_back(addr, [](void* ptr) { ::VirtualFree(ptr, 0, MEM_RELEASE); });
            // 複製文件內容到虛擬記憶體
            fileStream_.seekg(fileOffset);
            if (!fileStream_.read(reinterpret_cast<char*>(addr), fileSize)) {
                throw std::runtime_error("read contents into memory from LOAD program header failed");
            }
        }
        else if (type == PT_DYNAMIC) {
            // 遍歷動態節
            std::uint64_t fileOffset = *reinterpret_cast<const std::uint64_t*>(programHeader.p_offset);
            fileStream_.seekg(fileOffset);
            Elf64_External_Dyn dynSection = {};
            std::uint64_t dynSectionTag = 0;
            std::uint64_t dynSectionVal = 0;
            do {
                if (!fileStream_.read(reinterpret_cast<char*>(&dynSection), sizeof(dynSection))) {
                    throw std::runtime_error("read dynamic section failed");
                }
                dynSectionTag = *reinterpret_cast<const std::uint64_t*>(dynSection.d_tag);
                dynSectionVal = *reinterpret_cast<const std::uint64_t*>(dynSection.d_un.d_val);
                if (dynSectionTag == DT_JMPREL) {
                    jmpRelAddr = dynSectionVal;
                }
                else if (dynSectionTag == DT_PLTREL) {
                    pltRelType = dynSectionVal;
                }
                else if (dynSectionTag == DT_PLTRELSZ) {
                    pltRelSize = dynSectionVal;
                }
                else if (dynSectionTag == DT_SYMTAB) {
                    symTabAddr = dynSectionVal;
                }
                else if (dynSectionTag == DT_STRTAB) {
                    strTabAddr = dynSectionVal;
                }
                else if (dynSectionTag == DT_STRSZ) {
                    strTabSize = dynSectionVal;
                }
            } while (dynSectionTag != 0);
        }
    }

還記得我們上面使用readelf讀取到的信息嗎?

程式頭:
  Type           Offset             VirtAddr           PhysAddr
                 FileSiz            MemSiz              Flags  Align
  PHDR           0x0000000000000040 0x0000000000400040 0x0000000000400040
                 0x00000000000001f8 0x00000000000001f8  R E    8
  INTERP         0x0000000000000238 0x0000000000400238 0x0000000000400238
                 0x000000000000001c 0x000000000000001c  R      1
      [Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]
  LOAD           0x0000000000000000 0x0000000000400000 0x0000000000400000
                 0x00000000000007d4 0x00000000000007d4  R E    200000
  LOAD           0x0000000000000e10 0x0000000000600e10 0x0000000000600e10
                 0x0000000000000228 0x0000000000000230  RW     200000
  DYNAMIC        0x0000000000000e28 0x0000000000600e28 0x0000000000600e28
                 0x00000000000001d0 0x00000000000001d0  RW     8
  NOTE           0x0000000000000254 0x0000000000400254 0x0000000000400254
                 0x0000000000000044 0x0000000000000044  R      4
  GNU_EH_FRAME   0x0000000000000680 0x0000000000400680 0x0000000000400680
                 0x000000000000003c 0x000000000000003c  R      4
  GNU_STACK      0x0000000000000000 0x0000000000000000 0x0000000000000000
                 0x0000000000000000 0x0000000000000000  RW     10
  GNU_RELRO      0x0000000000000e10 0x0000000000600e10 0x0000000000600e10
                 0x00000000000001f0 0x00000000000001f0  R      1

這裡面類型是LOAD的頭代表需要載入文件的內容到記憶體,
Offset是文件的偏移值, VirtAddr是虛擬記憶體地址, FileSiz是需要載入的文件大小, MemSiz是需要分配的記憶體大小, Flags是記憶體的訪問許可權,
這個示例不考慮訪問許可權(統一使用PAGE_EXECUTE_READWRITE).

這個程式有兩個LOAD頭, 第一個包含了代碼和只讀數據(.data, .init, .rodata等節的內容), 第二個包含了可寫數據(.init_array, .fini_array等節的內容).

LOAD頭對應的內容載入到指定的記憶體地址後我們就完成了構想中的第2個第3個步驟, 現在代碼和數據都在記憶體中了.

接下來我們還需要處理動態鏈接的函數, 處理所需的信息可以從DYNAMIC頭得到
DYNAMIC頭包含的信息有

Dynamic section at offset 0xe28 contains 24 entries:
  標記        類型                         名稱/值
 0x0000000000000001 (NEEDED)             共用庫:[libc.so.6]
 0x000000000000000c (INIT)               0x4003c8
 0x000000000000000d (FINI)               0x400624
 0x0000000000000019 (INIT_ARRAY)         0x600e10
 0x000000000000001b (INIT_ARRAYSZ)       8 (bytes)
 0x000000000000001a (FINI_ARRAY)         0x600e18
 0x000000000000001c (FINI_ARRAYSZ)       8 (bytes)
 0x000000006ffffef5 (GNU_HASH)           0x400298
 0x0000000000000005 (STRTAB)             0x400318
 0x0000000000000006 (SYMTAB)             0x4002b8
 0x000000000000000a (STRSZ)              63 (bytes)
 0x000000000000000b (SYMENT)             24 (bytes)
 0x0000000000000015 (DEBUG)              0x0
 0x0000000000000003 (PLTGOT)             0x601000
 0x0000000000000002 (PLTRELSZ)           48 (bytes)
 0x0000000000000014 (PLTREL)             RELA
 0x0000000000000017 (JMPREL)             0x400398
 0x0000000000000007 (RELA)               0x400380
 0x0000000000000008 (RELASZ)             24 (bytes)
 0x0000000000000009 (RELAENT)            24 (bytes)
 0x000000006ffffffe (VERNEED)            0x400360
 0x000000006fffffff (VERNEEDNUM)         1
 0x000000006ffffff0 (VERSYM)             0x400358
 0x0000000000000000 (NULL)               0x0

一個個看上面代碼中涉及到的類型

  • DT_JMPREL: 重定位記錄的開始地址, 指向.rela.plt節在記憶體中保存的地址
  • DT_PLTREL: 重定位記錄的類型 RELA或RE, 這裡是RELAL
  • DT_PLTRELSZ: 重定位記錄的總大小, 這裡是24 * 2 = 48
重定位節 '.rela.plt' 位於偏移量 0x398 含有 2 個條目:
  偏移量          信息           類型           符號值        符號名稱 + 加數
000000601018  000100000007 R_X86_64_JUMP_SLO 0000000000000000 printf@GLIBC_2.2.5 + 0
000000601020  000200000007 R_X86_64_JUMP_SLO 0000000000000000 __libc_start_main@GLIBC_2.2.5 + 0
  • DT_SYMTAB: 動態符號表的開始地址, 指向.dynsym節在記憶體中保存的地址
  • DT_STRTAB: 動態符號名稱表的開始地址, 指向.dynstr節在記憶體中保存的地址
  • DT_STRSZ: 動態符號名稱表的總大小
Symbol table '.dynsym' contains 4 entries:
   Num:    Value          Size Type    Bind   Vis      Ndx Name
     0: 0000000000000000     0 NOTYPE  LOCAL  DEFAULT  UND 
     1: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND printf@GLIBC_2.2.5 (2)
     2: 0000000000000000     0 FUNC    GLOBAL DEFAULT  UND __libc_start_main@GLIBC_2.2.5 (2)
     3: 0000000000000000     0 NOTYPE  WEAK   DEFAULT  UND __gmon_start__

在遍歷完程式頭以後, 我們可以知道有兩個動態鏈接的函數需要重定位, 它們分別是__libc_start_mainprintf, 其中__libc_start_main負責調用main函數
接下來讓我們需要設置這些函數的地址

    // 讀取動態鏈接符號表
    std::string dynamicSymbolNames(reinterpret_cast<char*>(strTabAddr), strTabSize);
    Elf64_External_Sym* dynamicSymbols = reinterpret_cast<Elf64_External_Sym*>(symTabAddr);

    // 設置動態鏈接的函數地址
    std::cout << std::hex << "read dynamic entires at: 0x" << jmpRelAddr <<
        " size: 0x" << pltRelSize << std::dec << std::endl;
    if (jmpRelAddr == 0 || pltRelType != DT_RELA || pltRelSize % sizeof(Elf64_External_Rela) != 0) {
        throw std::runtime_error("invalid dynamic entry info, rel type should be rela");
    }
    std::vector<std::shared_ptr<void>> libraryFuncs;
    for (std::uint64_t offset = 0; offset < pltRelSize; offset += sizeof(Elf64_External_Rela)) {
        Elf64_External_Rela* rela = (Elf64_External_Rela*)(jmpRelAddr + offset);
        std::uint64_t relaOffset = *reinterpret_cast<const std::uint64_t*>(rela->r_offset);
        std::uint64_t relaInfo = *reinterpret_cast<const std::uint64_t*>(rela->r_info);
        std::uint64_t relaSym = relaInfo >> 32
              
您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 系統環境: Linux-centOS+ubuntu 操作: 編輯允許通過IP 路徑:vim /etc/hosts.allow 編輯禁止通過IP 路徑:vim /etc/hosts.deny 重啟網路服務 以上。 IP限制往往搭配代理伺服器混合使用,目的是比安全更安全! 代理伺服器相關搭建及配置【點擊 ...
  • 線程:線程是進程中的執行單元,也是分配CPU的最小單元。 組成部分:線程棧和內核對象 線程棧是存儲線程所需的資源。 內核對象是操作系統中的私有結構塊,通過它去管理當前的線程。 結束方式:強制殺死或者自然退出 同一進程中的多個線程退出:用變數的方式。 不同進程中多個線程的退出:跨進程操作,用消息和事件 ...
  • #! /bin/bash #設置只讀變數,只讀變數不可修改myUrl="http://www.baidu.com"readonly myUrl #刪除變數,unset不能刪除只讀變數myUrl1="http://www.sina.com"unset myUrl1 #運行shell時會同時存在三種變數 ...
  • 1.最近新學習websocket。做了一個實時聊天。用Node.js搭建的服務:serevr.js. 兩個相互通信頁面:client.html 和server.html 但是就是有很多問題,想讓知道的人幫我看看哈: 我先把代碼貼出來: server.js: var ws=require("nodej ...
  • 一、前言 我們都知道,在Linux中一切皆文件,比如配置文件,日誌文件,啟動文件等等。如果我們相對這些文件進行一些編輯查詢等操作時,我們可能會想到一些vi,vim,cat,more等命令。但是這些命令效率不高,這就好比一塊空地準備搭建房子,請了10個師傅拿著鐵鍬挖地基,花了一個月的時間才挖完,而另外 ...
  • 最近項目需求,功能變數名稱備案主體變更,要去香港搭個伺服器中轉,於是就很蛋疼的開始伺服器搭建之路。 在php配置時候出現一個問題,代碼提示 我以為是pdo沒有裝,然後就開始裝pdo,編譯後一直報錯,然後看論壇一群人抄啊抄的什麼都不知道,還抄錯的,讓人惱火。然後stackoverflow上有人說,pdo是ph ...
  • 我的電腦是在Windows 10下安裝的Ubuntu 14.04雙系統,今天進入Ubuntu系統訪問Windows 10 磁碟,出現如下錯誤: Error mounting /dev/sda1 at /media/linuxidc/WIN7: Command-line `mount -t "ntfs ...
  • 1、在vmware虛擬機選項下,選擇安裝vmware-tools 2、將vmware安裝目錄下的linux.iso裝載到系統中 2.1、選擇需安裝VMWareTools的虛擬機,右擊--可移動設備--CD/DVD--設置 2.2、選擇CD/DVD(SATA)--使用ISO映像文件--選文件--打鉤設 ...
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...