XN297LBW 是一個SOP8封裝的2.4GHz頻段無線收發晶元, 價格在1元左右, 因為面向的主要是低成本應用, 大多數搭配的MCU為廉價的8位8051, 不一定有硬體SPI, 為了保證相容在SDK中使用的都是GPIO模擬SPI方式進行驅動. 但是實際上是可以通過硬體SPI方式進行驅動的. 本文... ...
目錄
- 普冉PY32系列(一) PY32F0系列32位Cortex M0+ MCU簡介
- 普冉PY32系列(二) Ubuntu GCC Toolchain和VSCode開發環境
- 普冉PY32系列(三) PY32F002A資源實測 - 這個型號不簡單
- 普冉PY32系列(四) PY32F002A/003/030的時鐘設置
- 普冉PY32系列(五) 使用JLink RTT代替串口輸出日誌
- 普冉PY32系列(六) 通過I2C介面驅動PCF8574擴展的1602LCD
- 普冉PY32系列(七) SOP8,SOP10,SOP16封裝的PY32F002A/PY32F003管腳復用
- 普冉PY32系列(八) GPIO模擬和硬體SPI方式驅動無線收發晶元XN297LBW
XN297LBW
XN297LBW 是一個SOP8封裝的2.4GHz頻段無線收發晶元, 價格在1元左右, 適用於低成本應用. 雖然磐啟已經發佈了 XN297L 的下一代產品 PAN1026, 但是市面上基本上見不到後者的身影, 零售能買到的還是 XN297L.
生產商是上海磐啟, 產品頁地址: https://wiki.panchip.com/ble-lite/2-4g-t-rx/xn297l_series/
磐啟對 XN297L 的產品介紹: "工作在 2.400~2.483GHz 世界通用 ISM 頻段的單片無線收發晶元, XN297L採用嵌入式基帶協議引擎, 適用於超低功耗無線應用. 採用 GFSK 調製, 可配置頻率通道, 輸出功率和介面數據速率等射頻參數. XN297L 支持 2Mbps, 1Mbps 和 250Kbps 的數據速率. 對於長距離應用, 輸出功率可以調節高達 11dBm, 對於短距離和超低功率應用, 輸出功率可以低至-23dBm."
XN297LBW 主要特性
- 無線
- 通信頻段:2.400GHz~2.483GHz
- 數據速率:2Mbps,1Mbps,250Kbps
- 調製方式:GFSK
- 發射器
- 輸出功率:11, 9, 5, -1, -10 or -23dBm
- 18mA@2dBm
- 30mA@9dBm
- 接收器
- -83dBm@2Mbps
- -87dBm@1Mbps
- -91dBm@250Kbps
- 協議引擎
- 支持1到32位元組或64位元組數據長度
- 支持自動應答及自動重傳
- 6個接收數據通道構成1:6的星狀網路
- 電源管理
- 工作電壓:2.3~3.3V
- 2uA斷電模式
- 30uA待機-Ⅰ模式
- 主機介面
- 支持3引腳SPI, 4Mbps SPI介面速率
- 支持兩個獨立的32位元組TX和RX FIFOs
- 支持一個64位元組的TX和RX FIFOs
- 封裝
- SOP8
這裡要註意的幾點:
- 工作電壓是3.3V, 不要錯接5V.
- SPI速率為4MHz, 實測上限不會比4MHz高多少, 在6MHz頻率時大概率SPI通信錯誤導致不能工作.
- TX FIFO 與NRF24L01相比只有兩個32位元組, 而NRF24L01是3個32位元組. 性能相對縮水.
PIN腳定義和應用電路
PIN腳定義
- VDD 和 VSS 分別接 VCC 和 GND
- XC1 和 XC2 接晶振
- ANT 接天線
- 用於MCU介面通信的只有 CSN, SCK 和 DATA 這三個PIN
應用電路
模塊實物
嘉立創打樣的測試模塊 (項目地址 https://oshwhub.com/iosetting/xn297lbw-xl2400-evb)
使用PY32F0驅動XN297LBW
XN297L最新的SDK可以從磐啟的論壇下載 論壇›BLE-Lite系列2.4GHz TRX›XN297L›XN297L_SDK. 因為面向的主要是低成本應用, 大多數搭配的MCU為廉價的8位8051, 不一定有硬體SPI, 為了保證相容在SDK中使用的都是GPIO模擬SPI方式進行驅動. 但是實際上是可以通過硬體SPI方式進行驅動的.
以下分別對GPIO模擬和硬體SPI方式的驅動進行介紹.
硬體準備
- XN297LBW模塊
- PY32F002A/PY32F003/PY32F030 系列MCU的開發板, 建議在驗證階段使用 20PIN 及以上封裝的型號, 避免PIN腳復用引起的干擾. 跑通後再遷移到低PIN型號
- USB2TTL模塊, 用於觀察輸出
- 以上硬體需要兩套, 測試中分別用於接收和發送
下麵以PY32F002A為例. 代碼不需調整可以直接運行於 PY32F003x 和 PY32F030x 系列的其它型號.
GPIO模擬方式
接線
註意電源使用3.3V
PY32 XN297LBW SOP8
PA1 ------> CLK/SCK
PA6 ------> CSN/NSS
PA7 ------> DATA/MOSI
USB2TTL
PA2(TX) ----> RX
PA3(RX) ----> TX
代碼說明
SDK代碼中使用的MCU是STM8L, 需要遷移到 PY32F002A.
將 xn297l.h 中的 GPIO 設置換為PY32F002A的PIN腳
#define XN297L_DATA_OUT() LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_7, LL_GPIO_MODE_OUTPUT)
#define XN297L_DATA_IN() LL_GPIO_SetPinMode(GPIOA, LL_GPIO_PIN_7, LL_GPIO_MODE_INPUT)
#define XN297L_DATA_LOW() LL_GPIO_ResetOutputPin(GPIOA, LL_GPIO_PIN_7)
#define XN297L_DATA_HIGH() LL_GPIO_SetOutputPin(GPIOA, LL_GPIO_PIN_7)
#define XN297L_DATA_READ() LL_GPIO_IsInputPinSet(GPIOA, LL_GPIO_PIN_7)
#define XN297L_SCK_LOW() LL_GPIO_ResetOutputPin(GPIOA, LL_GPIO_PIN_1)
#define XN297L_SCK_HIGH() LL_GPIO_SetOutputPin(GPIOA, LL_GPIO_PIN_1)
#define XN297L_CSN_LOW() LL_GPIO_ResetOutputPin(GPIOA, LL_GPIO_PIN_6)
#define XN297L_CSN_HIGH() LL_GPIO_SetOutputPin(GPIOA, LL_GPIO_PIN_6)
#define XN297L_CE_LOW() XN297L_WriteReg(XN297L_CMD_CE_FSPI_OFF, 0)
#define XN297L_CE_HIGH() XN297L_WriteReg(XN297L_CMD_CE_FSPI_ON, 0)
在 main.c 中增加GPIO初始化
static void APP_GPIOConfig(void)
{
LL_GPIO_InitTypeDef GPIO_InitStruct;
/* PA1 CLK */
GPIO_InitStruct.Pin = LL_GPIO_PIN_1;
GPIO_InitStruct.Mode = LL_GPIO_MODE_OUTPUT;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* PA6 CSN */
GPIO_InitStruct.Pin = LL_GPIO_PIN_6;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* PA7 DATA */
GPIO_InitStruct.Pin = LL_GPIO_PIN_7;
GPIO_InitStruct.Mode = LL_GPIO_MODE_INPUT;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
使用GPIO模擬SPI的位元組寫
/**
* Emulate SPI Write on GPIO pins
*/
void XN297L_WriteByte(uint8_t value)
{
uint8_t i = 0;
XN297L_SCK_LOW();
XN297L_DATA_OUT();
for (i = 0; i < 8; i++)
{
XN297L_SCK_LOW();
if (value & 0x80)
{
XN297L_DATA_HIGH();
}
else
{
XN297L_DATA_LOW();
}
XN297L_SCK_HIGH();
value = value << 1;
}
XN297L_SCK_LOW();
}
模擬位元組讀. 這裡有個細節, 在XN297L_SCK_HIGH();
之後加一個__NOP();
, 如果沒有這個NOP(), PY32F0在低頻率(8MHz和24MHz)的時候容易產生讀取錯誤.
/**
* Emulate SPI Read on GPIO pins
*/
uint8_t XN297L_ReadByte(void)
{
uint8_t i = 0, RxData = 0;
XN297L_DATA_IN();
for (i = 0; i < 8; i++)
{
RxData = RxData << 1;
XN297L_SCK_HIGH();
__NOP();
if (XN297L_DATA_READ())
{
RxData |= 0x01;
}
else
{
RxData &= 0xfe;
}
XN297L_SCK_LOW();
}
return RxData;
}
XN297L 的初始化. 這部分是相對固定的流程, 可以根據自己的需要進行調整, 但是在測試階段務必保持接收端和發送端的配置一致. 這裡在SDK的代碼上做了一些修改, 開啟了發送的重試和ACK.
// 這部分來自於手冊 "XN297L 軟體設計和調試參考"
const uint8_t
BB_cal_data[] = {0x12,0xED,0x67,0x9C,0x46},
RF_cal_data[] = {0xF6,0x3F,0x5D},
RF_cal2_data[] = {0x45,0x21,0xEF,0x2C,0x5A,0x42},
Dem_cal_data[] = {0x01},
Dem_cal2_data[] = {0x0B,0xDF,0x02};
void XN297L_Init(void)
{
XN297L_WriteReg(XN297L_CMD_RST_FSPI, 0x5A); // Soft reset
XN297L_WriteReg(XN297L_CMD_RST_FSPI, 0XA5);
XN297L_WriteReg(XN297L_CMD_FLUSH_TX, 0);
XN297L_WriteReg(XN297L_CMD_FLUSH_RX, 0);
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_STATUS, 0x70); // Clear status flags
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_EN_AA, 0x3F); // AutoAck on all pipes
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_EN_RXADDR, 0x3F); // Enable all pipes (P0 ~ P5, bit0 ~ bit5)
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_SETUP_AW, XN297L_SETUP_AW_5BYTE); // Address width
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_RF_CH, 78); // Channel 78, 2478M HZ
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_RX_PW_P0, XN297L_PLOAD_WIDTH ); // Payload width of P0
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_RX_PW_P1, XN297L_PLOAD_WIDTH ); // Payload width of P1
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_RX_PW_P2, XN297L_PLOAD_WIDTH ); // Payload width of P2
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_RX_PW_P3, XN297L_PLOAD_WIDTH ); // Payload width of P3
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_RX_PW_P4, XN297L_PLOAD_WIDTH ); // Payload width of P4
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_RX_PW_P5, XN297L_PLOAD_WIDTH ); // Payload width of P5
XN297L_WriteFromBuf(XN297L_CMD_W_REGISTER | XN297L_REG_BB_CAL, BB_cal_data, sizeof(BB_cal_data));
XN297L_WriteFromBuf(XN297L_CMD_W_REGISTER | XN297L_REG_RF_CAL2, RF_cal2_data, sizeof(RF_cal2_data));
XN297L_WriteFromBuf(XN297L_CMD_W_REGISTER | XN297L_REG_DEM_CAL, Dem_cal_data, sizeof(Dem_cal_data));
XN297L_WriteFromBuf(XN297L_CMD_W_REGISTER | XN297L_REG_RF_CAL, RF_cal_data, sizeof(RF_cal_data));
XN297L_WriteFromBuf(XN297L_CMD_W_REGISTER | XN297L_REG_DEM_CAL2, Dem_cal2_data,sizeof(Dem_cal2_data));
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_DYNPD, 0x00); // Dynamic payload width: off
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_RF_SETUP, XN297L_RF_POWER_P_9|XN297L_RF_DR_1M); // 9dbm 1Mbps
XN297L_WriteReg(XN297L_CMD_ACTIVATE, 0x73);
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_SETUP_RETR, 0x10|0x05); // Retry interval 500µs, 5 times
if(XN297L_PLOAD_WIDTH >32)
{
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_FEATURE, XN297L_FEATURE_BIT5_CE_SOFT|XN297L_FEATURE_BIT43_DATA_64BYTE);
}
else
{
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_FEATURE, XN297L_FEATURE_BIT5_CE_SOFT);
}
}
數據發送函數. 因為前面開啟了重試和ACK, 這裡做了一個等待發送結果的輪詢和超時判斷
uint8_t XN297L_TxData(uint8_t *ucPayload, uint8_t length)
{
uint8_t y = 100, status = 0;
XN297L_CE_HIGH();
__NOP();
XN297L_WriteFromBuf(XN297L_CMD_W_TX_PAYLOAD, ucPayload, length);
// Retry until timeout
while (y--)
{
LL_mDelay(1);
status = XN297L_ReadStatus();
// If TX successful or retry timeout, exit
if ((status & (XN297L_FLAG_MAX_RT | XN297L_FLAG_TX_DS)) != 0)
{
//printf(" %d %02x\r\n", y, status);
break;
}
}
XN297L_WriteReg(XN297L_CMD_FLUSH_TX, 0);
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_STATUS, 0x70);
XN297L_CE_LOW();
return status;
}
數據接收. 因為接收使用的是輪詢, 所以這裡只是簡單地判斷了接收狀態, 在收到數據時讀取數據.
uint8_t XN297L_DumpRxData(void)
{
uint8_t status, rxplWidth;
status = XN297L_ReadStatus();
if (status & XN297L_FLAG_RX_DR)
{
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_STATUS, status);
rxplWidth = XN297L_ReadReg(XN297L_CMD_R_RX_PL_WID);
XN297L_ReadToBuf(XN297L_CMD_R_RX_PAYLOAD, xbuf, rxplWidth);
}
return status;
}
完整代碼
XN297L 示例代碼的 GitHub 倉庫地址: https://github.com/IOsetting/py32f0-template/tree/main/Examples/PY32F0xx/LL/GPIO/XN297LBW_Wireless
運行測試
修改 main.c 中的模式設置, 0為接收, 1為發送, 分別寫入至兩個PY32F002A開發板, 觀察UART的輸出.
// 0:RX, 1:TX
#define XN297L_MODE 0
接收端在每次接收到數據時, 輸出第1,2,31個位元組的值; 發送端每發送255組數據(每組32位元組)後, 會顯示發送成功的個數(十六進位), 這個輸出可以用於計算發送成功率, 以及發送速度.
硬體SPI方式
接線
接線方式使用4線制全雙工, PY32的MOSI和MISO都接到XN297LBW的DATA, 但是在MOSI(PA7)上串一個1K的電阻. 對於使用SPI協議的三線連接, 如果半雙工SPI有問題, 都可以用這種接線試試全雙工方式通信. 從實際測試看, XN297LBW 支持這種接線方式.
PY32 XN297LBW SOP8
PA0 ------------> DATA/MOSI
PA7 ---> 1KR ---> DATA/MOSI
PA1 ------------> CLK/SCK
PA6 ------------> CSN/NSS
USB2TTL
PA2(TX) ----------> RX
PA3(RX) ----------> TX
代碼說明
SPI介面的初始化. 註意SPI的時鐘頻率不要超過4MHz
/**
* SPI1 Alternative Function Pins
* SPI1_SCK: PA1_AF0, PA2_AF10, PA5_AF0, PA9_AF10, PB3_AF0
* SPI1_MISO: PA0_AF10, PA6_AF0, PA7_AF10, PA11_AF0, PA13_AF10, PB4_AF0
* SPI1_MOSI: PA1_AF10, PA2_AF0, PA3_AF10, PA7_AF0, PA8_AF10, PA12_AF0, PB5_AF0
* SPI1_NSS: PA4_AF0, PA10_AF10, PA15_AF0, PB0_AF0, PF1_AF10, PF3_AF10
*/
static void APP_SPI_Config(void)
{
LL_SPI_InitTypeDef SPI_InitStruct = {0};
LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
LL_APB1_GRP2_EnableClock(LL_APB1_GRP2_PERIPH_SPI1);
// PA1 SCK
GPIO_InitStruct.Pin = LL_GPIO_PIN_1;
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
GPIO_InitStruct.Pull = LL_GPIO_PULL_UP;
GPIO_InitStruct.Alternate = LL_GPIO_AF_0;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
// PA0 MISO
GPIO_InitStruct.Pin = LL_GPIO_PIN_0;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct.Alternate = LL_GPIO_AF_10;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
// PA7 MOSI
GPIO_InitStruct.Pin = LL_GPIO_PIN_7;
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
GPIO_InitStruct.Alternate = LL_GPIO_AF_0;
LL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*
* Full duplex mode, MOSI and MISO both connect to DATA,
* Add one 1KR between MOSI and DATA
*/
SPI_InitStruct.TransferDirection = LL_SPI_FULL_DUPLEX;
SPI_InitStruct.Mode = LL_SPI_MODE_MASTER;
SPI_InitStruct.DataWidth = LL_SPI_DATAWIDTH_8BIT;
SPI_InitStruct.ClockPolarity = LL_SPI_POLARITY_LOW;
SPI_InitStruct.ClockPhase = LL_SPI_PHASE_1EDGE;
SPI_InitStruct.NSS = LL_SPI_NSS_SOFT;
// SPI的時鐘頻率不要超過4MHz
SPI_InitStruct.BaudRate = LL_SPI_BAUDRATEPRESCALER_DIV16;
SPI_InitStruct.BitOrder = LL_SPI_MSB_FIRST;
LL_SPI_Init(SPI1, &SPI_InitStruct);
LL_SPI_Enable(SPI1);
}
硬體SPI方式的位元組讀寫
uint8_t SPI_TxRxByte(uint8_t data)
{
uint8_t SPITimeout = 0xFF;
/* Check the status of Transmit buffer Empty flag */
while (READ_BIT(SPI1->SR, SPI_SR_TXE) == RESET)
{
if (SPITimeout-- == 0)
return 0;
}
LL_SPI_TransmitData8(SPI1, data);
SPITimeout = 0xFF;
while (READ_BIT(SPI1->SR, SPI_SR_RXNE) == RESET)
{
if (SPITimeout-- == 0)
return 0;
}
// Read from RX buffer
return LL_SPI_ReceiveData8(SPI1);
}
對應XN297L的命令讀寫改造為調用硬體SPI讀寫函數
uint8_t XN297L_WriteReg(uint8_t reg, uint8_t value)
{
uint8_t reg_val;
XN297L_CSN_LOW();
SPI_TxRxByte(reg);
reg_val = SPI_TxRxByte(value);
XN297L_CSN_HIGH();
return reg_val;
}
uint8_t XN297L_ReadReg(uint8_t reg)
{
uint8_t reg_val;
XN297L_CSN_LOW();
SPI_TxRxByte(reg);
reg_val = SPI_TxRxByte(XN297L_CMD_NOP);
XN297L_CSN_HIGH();
return reg_val;
}
完整代碼
XN297L 示例代碼的 GitHub 倉庫地址: https://github.com/IOsetting/py32f0-template/tree/main/Examples/PY32F0xx/LL/SPI/XN297L_Wireless
運行測試
和GPIO模擬方式的一樣, 修改 main.c 中的模式設置, 0為接收, 1為發送, 分別寫入至兩個PY32F002A開發板, 觀察UART的輸出.
// 0:RX, 1:TX
#define XN297L_MODE 0
利用FIFO隊列提升發送速度
在 NRF24L01 的使用中, 可以通過 "直接寫入TX FIFO -> 通過 FLAG 觀察 TX FIFO 是否寫滿判斷是繼續寫入還是阻塞等待" 的方式提升發送速度. XN297L 的 TX FIFO 隊列包含兩組 32 個位元組, 也可以通過這種方式進行加速.
相關的函數
ErrorStatus XN297L_TxFast(const uint8_t *ucPayload, uint8_t length)
{
//Blocking only if FIFO is full. This will loop and block until TX is successful or fail
while ((XN297L_ReadStatus() & XN297L_FLAG_TX_FULL)) {
if (xn297l_state & XN297L_FLAG_MAX_RT) {
return ERROR;
}
}
XN297L_WriteFromBuf(XN297L_CMD_W_TX_PAYLOAD, ucPayload, length);
XN297L_CE_HIGH();
return SUCCESS;
}
// 用於 MAX_RT 狀態清除標誌位
void XN297L_ReuseTX(void)
{
XN297L_WriteReg(XN297L_CMD_W_REGISTER | XN297L_REG_STATUS, XN297L_FLAG_MAX_RT); //Clear max retry flag
XN297L_CE_LOW();
XN297L_CE_HIGH();
}
使用方式: 在發送迴圈中調用 XN297L_TxFast() 進行發送, 在遇到錯誤時, 用 XN297L_ReuseTX() 重置狀態
if (XN297L_TxFast(tmp, XN297L_PLOAD_WIDTH) == SUCCESS)
{
j++;
}
else
{
XN297L_ReuseTX();
}
從實際測試結果看, 用 XN297L_TxFast() 發送相比普通發送方式有10%的性能提升.