.NET 向量類型的運算結果範例——用於學習Vector類所提供百多個向量方法

来源:https://www.cnblogs.com/zyl910/archive/2022/11/20/dotnet_simd_VectorClassDemo.html
-Advertisement-
Play Games

摘要 這片文章主要是記錄自己的整活過程,涉及到的技術包括.NET IoT, .NET Web, .NET MAUI,框架採用的也是最新的.NET 7。 本人是用的樹莓派Zero 2 W(ubuntu-22.04)進行開發測試,但是.NET IoT庫也有社區張高興提交的香橙派GPIO引腳的映射,香橙派 ...


作者:

目錄
目錄

    一、背景

    從.NET Core 1.0(或 .NET Framework 4.5、.NET Standard 1.0)開始,.NET中便可以使用具有SIMD硬體加速的向量類型了。
    其中大小與硬體相關的向量(Vectors with a hardware dependent size)作用最大。它由 只讀結構體(readonly struct) Vector<T>,及輔助的靜態類 Vector 所組成。
    只讀結構體 Vector<T> 主要是通過運算符提供了常規算術運算的能力,功能有限。而靜態類 Vector 為向量類型提供了大量的運算函數,能大大拓展了向量類型的使用領域。
    但是靜態類 Vector 提供了大量的方法,數量達到一百多個,且文檔說明很簡略,導致學習起來很困難。

    於是我編寫了一個Demo程式,將靜態類 Vector所提供百多個向量方法,每一個均編寫了測試代碼。利用 測試代碼、運行結果 與官方文檔進行對照,這樣便更容易弄懂了。

    二、編寫Demo程式(VectorClassDemo)

    2.1 項目結構

    目前解決方案里有這3個項目:

    • VectorClassDemo:共用項目。裡面是公用的測試代碼。
    • VectorClassDemo20:.NET Core 2.0 控制台項目。用於測試低版本 .NET Core 2.0 時的運行情況。
    • VectorClassDemo50:Net 5.0 控制台項目。用於測試高版本 .NET 時的運行情況。例如可臨時將項目的目標框架修改為“.Net 7.0”,測試 “.Net 7.0”下的表現。

    為了便於不同目標框架的測試,於是將公用的測試代碼放在共用項目里,這樣能便於代碼復用,使控制台的代碼簡單。例如 VectorClassDemo50 中 Program.cs 代碼為:

    using System;
    using System.IO;
    using VectorClassDemo;
    
    namespace VectorClassDemo50 {
        class Program {
            static void Main(string[] args) {
                string indent = "";
                TextWriter tw = Console.Out;
                tw.WriteLine("VectorClassDemo50");
                tw.WriteLine();
                VectorDemo.OutputEnvironment(tw, indent);
                tw.WriteLine();
                VectorDemo.Run(tw, indent);
            }
        }
    }
    

    2.2 輸出環境信息(OutputEnvironment)

    因為這次測試了多個平臺,不同平臺的環境信息信息均不同。於是可以專門用一個函數來輸出環境信息,源碼如下。

    /// <summary>
    /// Is release make.
    /// </summary>
    public static readonly bool IsRelease =
    #if DEBUG
        false
    #else
        true
    #endif
    ;
    
    /// <summary>
    /// Output Environment.
    /// </summary>
    /// <param name="tw">Output <see cref="TextWriter"/>.</param>
    /// <param name="indent">The indent.</param>
    public static void OutputEnvironment(TextWriter tw, string indent) {
        if (null == tw) return;
        if (null == indent) indent = "";
        //string indentNext = indent + "\t";
        tw.WriteLine(indent + string.Format("IsRelease:\t{0}", IsRelease));
        tw.WriteLine(indent + string.Format("EnvironmentVariable(PROCESSOR_IDENTIFIER):\t{0}", Environment.GetEnvironmentVariable("PROCESSOR_IDENTIFIER")));
        tw.WriteLine(indent + string.Format("Environment.ProcessorCount:\t{0}", Environment.ProcessorCount));
        tw.WriteLine(indent + string.Format("Environment.Is64BitOperatingSystem:\t{0}", Environment.Is64BitOperatingSystem));
        tw.WriteLine(indent + string.Format("Environment.Is64BitProcess:\t{0}", Environment.Is64BitProcess));
        tw.WriteLine(indent + string.Format("Environment.OSVersion:\t{0}", Environment.OSVersion));
        tw.WriteLine(indent + string.Format("Environment.Version:\t{0}", Environment.Version));
        //tw.WriteLine(indent + string.Format("RuntimeEnvironment.GetSystemVersion:\t{0}", System.Runtime.InteropServices.RuntimeEnvironment.GetSystemVersion())); // Same Environment.Version
        tw.WriteLine(indent + string.Format("RuntimeEnvironment.GetRuntimeDirectory:\t{0}", System.Runtime.InteropServices.RuntimeEnvironment.GetRuntimeDirectory()));
    #if (NET47 || NET462 || NET461 || NET46 || NET452 || NET451 || NET45 || NET40 || NET35 || NET20) || (NETSTANDARD1_0)
    #else
        tw.WriteLine(indent + string.Format("RuntimeInformation.FrameworkDescription:\t{0}", System.Runtime.InteropServices.RuntimeInformation.FrameworkDescription));
    #endif
        tw.WriteLine(indent + string.Format("BitConverter.IsLittleEndian:\t{0}", BitConverter.IsLittleEndian));
        tw.WriteLine(indent + string.Format("IntPtr.Size:\t{0}", IntPtr.Size));
        tw.WriteLine(indent + string.Format("Vector.IsHardwareAccelerated:\t{0}", Vector.IsHardwareAccelerated));
        tw.WriteLine(indent + string.Format("Vector<byte>.Count:\t{0}\t# {1}bit", Vector<byte>.Count, Vector<byte>.Count * sizeof(byte) * 8));
        //tw.WriteLine(indent + string.Format("Vector<float>.Count:\t{0}\t# {1}bit", Vector<float>.Count, Vector<float>.Count * sizeof(float) * 8));
        //tw.WriteLine(indent + string.Format("Vector<double>.Count:\t{0}\t# {1}bit", Vector<double>.Count, Vector<double>.Count * sizeof(double) * 8));
        Assembly assembly;
        //assembly = typeof(Vector4).GetTypeInfo().Assembly;
        //tw.WriteLine(string.Format("Vector4.Assembly:\t{0}", assembly));
        //tw.WriteLine(string.Format("Vector4.Assembly.CodeBase:\t{0}", assembly.CodeBase));
        assembly = typeof(Vector<float>).GetTypeInfo().Assembly;
        tw.WriteLine(string.Format("Vector<T>.Assembly.CodeBase:\t{0}", assembly.CodeBase));
    
        OutputIntrinsics(tw, indent);
    }
    
    /// <summary>
    /// Output Intrinsics.
    /// </summary>
    /// <param name="tw">Output <see cref="TextWriter"/>.</param>
    /// <param name="indent">The indent.</param>
    public static void OutputIntrinsics(TextWriter tw, string indent) {
        if (null == tw) return;
        if (null == indent) indent = "";
    #if NETCOREAPP3_0_OR_GREATER
        tw.WriteLine();
        tw.WriteLine(indent + "[Intrinsics.X86]");
        WriteLineFormat(tw, indent, "Aes.IsSupported:\t{0}", System.Runtime.Intrinsics.X86.Aes.IsSupported);
        WriteLineFormat(tw, indent, "Aes.X64.IsSupported:\t{0}", System.Runtime.Intrinsics.X86.Aes.X64.IsSupported);
        WriteLineFormat(tw, indent, "Avx.IsSupported:\t{0}", Avx.IsSupported);
        WriteLineFormat(tw, indent, "Avx.X64.IsSupported:\t{0}", Avx.X64.IsSupported);
        WriteLineFormat(tw, indent, "Avx2.IsSupported:\t{0}", Avx2.IsSupported);
        WriteLineFormat(tw, indent, "Avx2.X64.IsSupported:\t{0}", Avx2.X64.IsSupported);
    #if NET6_0_OR_GREATER
        WriteLineFormat(tw, indent, "AvxVnni.IsSupported:\t{0}", AvxVnni.IsSupported);
        WriteLineFormat(tw, indent, "AvxVnni.X64.IsSupported:\t{0}", AvxVnni.X64.IsSupported);
    #endif
        WriteLineFormat(tw, indent, "Bmi1.IsSupported:\t{0}", Bmi1.IsSupported);
        WriteLineFormat(tw, indent, "Bmi1.X64.IsSupported:\t{0}", Bmi1.X64.IsSupported);
        WriteLineFormat(tw, indent, "Bmi2.IsSupported:\t{0}", Bmi2.IsSupported);
        WriteLineFormat(tw, indent, "Bmi2.X64.IsSupported:\t{0}", Bmi2.X64.IsSupported);
        WriteLineFormat(tw, indent, "Fma.IsSupported:\t{0}", Fma.IsSupported);
        WriteLineFormat(tw, indent, "Fma.X64.IsSupported:\t{0}", Fma.X64.IsSupported);
        WriteLineFormat(tw, indent, "Lzcnt.IsSupported:\t{0}", Lzcnt.IsSupported);
        WriteLineFormat(tw, indent, "Lzcnt.X64.IsSupported:\t{0}", Lzcnt.X64.IsSupported);
        WriteLineFormat(tw, indent, "Pclmulqdq.IsSupported:\t{0}", Pclmulqdq.IsSupported);
        WriteLineFormat(tw, indent, "Pclmulqdq.X64.IsSupported:\t{0}", Pclmulqdq.X64.IsSupported);
        WriteLineFormat(tw, indent, "Popcnt.IsSupported:\t{0}", Popcnt.IsSupported);
        WriteLineFormat(tw, indent, "Popcnt.X64.IsSupported:\t{0}", Popcnt.X64.IsSupported);
        WriteLineFormat(tw, indent, "Sse.IsSupported:\t{0}", Sse.IsSupported);
        WriteLineFormat(tw, indent, "Sse.X64.IsSupported:\t{0}", Sse.X64.IsSupported);
        WriteLineFormat(tw, indent, "Sse2.IsSupported:\t{0}", Sse2.IsSupported);
        WriteLineFormat(tw, indent, "Sse2.X64.IsSupported:\t{0}", Sse2.X64.IsSupported);
        WriteLineFormat(tw, indent, "Sse3.IsSupported:\t{0}", Sse3.IsSupported);
        WriteLineFormat(tw, indent, "Sse3.X64.IsSupported:\t{0}", Sse3.X64.IsSupported);
        WriteLineFormat(tw, indent, "Sse41.IsSupported:\t{0}", Sse41.IsSupported);
        WriteLineFormat(tw, indent, "Sse41.X64.IsSupported:\t{0}", Sse41.X64.IsSupported);
        WriteLineFormat(tw, indent, "Sse42.IsSupported:\t{0}", Sse42.IsSupported);
        WriteLineFormat(tw, indent, "Sse42.X64.IsSupported:\t{0}", Sse42.X64.IsSupported);
        WriteLineFormat(tw, indent, "Ssse3.IsSupported:\t{0}", Ssse3.IsSupported);
        WriteLineFormat(tw, indent, "Ssse3.X64.IsSupported:\t{0}", Ssse3.X64.IsSupported);
    #if NET5_0_OR_GREATER
        WriteLineFormat(tw, indent, "X86Base.IsSupported:\t{0}", X86Base.IsSupported);
        WriteLineFormat(tw, indent, "X86Base.X64.IsSupported:\t{0}", X86Base.X64.IsSupported);
    #endif // NET5_0_OR_GREATER
    #if NET7_0_OR_GREATER
        WriteLineFormat(tw, indent, "X86Serialize.IsSupported:\t{0}", X86Serialize.IsSupported);
        WriteLineFormat(tw, indent, "X86Serialize.X64.IsSupported:\t{0}", X86Serialize.X64.IsSupported);
    #endif // NET7_0_OR_GREATER
    #endif // NETCOREAPP3_0_OR_GREATER
    
    #if NET5_0_OR_GREATER
        tw.WriteLine();
        tw.WriteLine(indent + "[Intrinsics.Arm]");
        WriteLineFormat(tw, indent, "AdvSimd.IsSupported:\t{0}", AdvSimd.IsSupported);
        WriteLineFormat(tw, indent, "AdvSimd.Arm64.IsSupported:\t{0}", AdvSimd.Arm64.IsSupported);
        WriteLineFormat(tw, indent, "Aes.IsSupported:\t{0}", System.Runtime.Intrinsics.Arm.Aes.IsSupported);
        WriteLineFormat(tw, indent, "Aes.Arm64.IsSupported:\t{0}", System.Runtime.Intrinsics.Arm.Aes.Arm64.IsSupported);
        WriteLineFormat(tw, indent, "ArmBase.IsSupported:\t{0}", ArmBase.IsSupported);
        WriteLineFormat(tw, indent, "ArmBase.Arm64.IsSupported:\t{0}", ArmBase.Arm64.IsSupported);
        WriteLineFormat(tw, indent, "Crc32.IsSupported:\t{0}", Crc32.IsSupported);
        WriteLineFormat(tw, indent, "Crc32.Arm64.IsSupported:\t{0}", Crc32.Arm64.IsSupported);
        WriteLineFormat(tw, indent, "Dp.IsSupported:\t{0}", Dp.IsSupported);
        WriteLineFormat(tw, indent, "Dp.Arm64.IsSupported:\t{0}", Dp.Arm64.IsSupported);
        WriteLineFormat(tw, indent, "Rdm.IsSupported:\t{0}", Rdm.IsSupported);
        WriteLineFormat(tw, indent, "Rdm.Arm64.IsSupported:\t{0}", Rdm.Arm64.IsSupported);
        WriteLineFormat(tw, indent, "Sha1.IsSupported:\t{0}", Sha1.IsSupported);
        WriteLineFormat(tw, indent, "Sha1.Arm64.IsSupported:\t{0}", Sha1.Arm64.IsSupported);
        WriteLineFormat(tw, indent, "Sha256.IsSupported:\t{0}", Sha256.IsSupported);
        WriteLineFormat(tw, indent, "Sha256.Arm64.IsSupported:\t{0}", Sha256.Arm64.IsSupported);
    #endif // NET5_0_OR_GREATER
    }
    

    因向量類型與內在函數(Intrinsics Functions)緊密相關,於是該函數還輸出了各類內在函數的支持信息。
    在開發過程中,發現 .NET 版本升級時也在增加更多的 內在函數(Intrinsics Functions)。例如 Net 5.0 時增加了大量 Arm架構的內在函數,且增加了 X86Base。
    可以利用條件編譯,安全使用當前.NET 版本所允許使用的類。

    2.3 創建測試數據(CreateVectorUseRotate)

    使用 Vector<T> 的構造函數,只能創建單個數字重覆的值,或是通過數據(或Span)逐一指定數字。前者太死板,後者又太繁瑣。因為在不同的處理器上,Vector<T>的長度是不同的。
    目前在支持 Avx2指令集的機器上,Vector<T>是256位的;而其他情況是 128位的。例如 128位的Vector<T>含有4個Single,而256位的Vector<T>含有8個Single,未來Vector<T>很可能會有512位或更高。
    對於測試來說,很多時候我們用一批迴圈數字就行。例如 128位時用 “a,b,c,d”,而256位時用“a,b,c,d,a,b,c,d”就好。
    於是我建立了一個根據有限數據來迴圈鋪滿各個向量元素的函數。而且它是用 params 定義的可變參數,極大地方便了使用。代碼如下。

    /// <summary>
    /// Create Vector&lt;T&gt; use rotate.
    /// </summary>
    /// <typeparam name="T">Vector type.</typeparam>
    /// <param name="list">Source value list.</param>
    /// <returns>Returns Vector&lt;T&gt;.</returns>
    static Vector<T> CreateVectorUseRotate<T>(params T[] list) where T : struct {
        if (null == list || list.Length <= 0) return Vector<T>.Zero;
        T[] arr = new T[Vector<T>.Count];
        int idx = 0;
        for(int i=0; i< arr.Length; ++i) {
            arr[i] = list[idx];
            ++idx;
            if (idx >= list.Length) idx = 0;
        }
        Vector <T> rt = new Vector<T>(arr);
        return rt;
    }
    

    2.4 開始測試(Run)

    有了CreateVectorUseRotate幫忙構造測試數據後,我們可以很方便的建立測試程式的骨架了。代碼如下:

    public static void Run(TextWriter tw, string indent) {
        RunType(tw, indent, CreateVectorUseRotate(float.MinValue, float.PositiveInfinity, float.NaN, -1.2f, 0f, 1f, 2f, 4f), new Vector<float>(2.0f));
        RunType(tw, indent, CreateVectorUseRotate(double.MinValue, double.PositiveInfinity, -1.2, 0), new Vector<double>(2.0));
        RunType(tw, indent, CreateVectorUseRotate<sbyte>(sbyte.MinValue, sbyte.MaxValue, -1, 0, 1, 2, 3, 4), new Vector<sbyte>(2));
        RunType(tw, indent, CreateVectorUseRotate<short>(short.MinValue, short.MaxValue, -1, 0, 1, 2, 3, 4, 127, 128), new Vector<short>(2));
        RunType(tw, indent, CreateVectorUseRotate<int>(int.MinValue, int.MaxValue, -1, 0, 1, 2, 3, 32768), new Vector<int>(2));
        RunType(tw, indent, CreateVectorUseRotate<long>(long.MinValue, long.MaxValue, -1, 0, 1, 2, 3), new Vector<long>(2));
        RunType(tw, indent, CreateVectorUseRotate<byte>(byte.MinValue, byte.MaxValue, 0, 1, 2, 3, 4), new Vector<byte>(2));
        RunType(tw, indent, CreateVectorUseRotate<ushort>(ushort.MinValue, ushort.MaxValue, 0, 1, 2, 3, 4, 255, 256), new Vector<ushort>(2));
        RunType(tw, indent, CreateVectorUseRotate<uint>(uint.MinValue, uint.MaxValue, 0, 1, 2, 3, 65536), new Vector<uint>(2));
        RunType(tw, indent, CreateVectorUseRotate<ulong>(ulong.MinValue, ulong.MaxValue, 0, 1, 2, 3), new Vector<ulong>(2));
    }
    

    2.5 測試指定類型(RunType)

    RunType 是一個泛型函數,能夠分別測試每一種數字類型。主要代碼如下。

    /// <summary>
    /// Run type demo.
    /// </summary>
    /// <typeparam name="T">Vector type.</typeparam>
    /// <param name="tw">Output <see cref="TextWriter"/>.</param>
    /// <param name="indent">The indent.</param>
    /// <param name="srcT">Source temp value.</param>
    /// <param name="src2">Source 2.</param>
    static void RunType<T>(TextWriter tw, string indent, Vector<T> srcT, Vector<T> src2) where T : struct {
        Vector<T> src0 = Vector<T>.Zero;
        Vector<T> src1 = Vector<T>.One;
        Vector<T> srcAllOnes = ~Vector<T>.Zero;
        int elementBitSize = (Vector<byte>.Count / Vector<T>.Count) * 8;
        tw.WriteLine(indent + string.Format("-- {0}, Vector<{0}>.Count={1} --", typeof(T).Name, Vector<T>.Count));
        WriteLineFormat(tw, indent, "srcT:\t{0}", srcT);
        //WriteLineFormat(tw, indent, "src2:\t{0}", src2);
        WriteLineFormat(tw, indent, "srcAllOnes:\t{0}", srcAllOnes);
    
        // -- Methods --
        #region Methods
        //Abs<T>(Vector<T>) Returns a new vector whose elements are the absolute values of the given vector's elements.
        WriteLineFormat(tw, indent, "Abs(srcT):\t{0}", Vector.Abs(srcT));
        WriteLineFormat(tw, indent, "Abs(srcAllOnes):\t{0}", Vector.Abs(srcAllOnes));
    
        //Add<T>(Vector<T>, Vector<T>) Returns a new vector whose values are the sum of each pair of elements from two given vectors.
        WriteLineFormat(tw, indent, "Add(srcT, src1):\t{0}", Vector.Add(srcT, src1));
        WriteLineFormat(tw, indent, "Add(srcT, src2):\t{0}", Vector.Add(srcT, src2));
    
        //AndNot<T>(Vector<T>, Vector<T>) Returns a new vector by performing a bitwise And Not operation on each pair of corresponding elements in two vectors.
        WriteLineFormat(tw, indent, "AndNot(srcT, src1):\t{0}", Vector.AndNot(srcT, src1));
        WriteLineFormat(tw, indent, "AndNot(srcT, src2):\t{0}", Vector.AndNot(srcT, src2));
    

    參數列表裡有2個測試用的向量值,分別是 srcT、src2。
    方法的頭部定義了一些常用的向量值,如:src0(0的值)、src1(1的值)、srcAllOnes(每個位全為1的值)。隨後輸出 srcT、srcAllOnes 的值,便於口算數據。

    然後便是分別對 靜態類Vector 的各個方法進行測試了。

    2.5.1 非泛型的方法

    靜態類Vector所提供的大部分方法是泛型方法,它們在RunType這樣的泛型方法內使用時是很方便的。
    但靜態類Vector的部分方法不是泛型方法,而是通過重載(overload)的方式提供各個類型的方法的。這時用起來麻煩一些,需要用 typeof 寫分支代碼。代碼如下。

    //ConvertToDouble(Vector<Int64>) Converts a Vector<Int64>to aVector<Double>.
    //ConvertToDouble(Vector<UInt64>) Converts a Vector<UInt64> to aVector<Double>.
    //ConvertToInt32(Vector<Single>) Converts a Vector<Single> to aVector<Int32>.
    //ConvertToInt64(Vector<Double>) Converts a Vector<Double> to aVector<Int64>.
    //ConvertToSingle(Vector<Int32>) Converts a Vector<Int32> to aVector<Single>.
    //ConvertToSingle(Vector<UInt32>) Converts a Vector<UInt32> to aVector<Single>.
    //ConvertToUInt32(Vector<Single>) Converts a Vector<Single> to aVector<UInt32>.
    //ConvertToUInt64(Vector<Double>) Converts a Vector<Double> to aVector<UInt64>.
    if (typeof(T) == typeof(Double)) {
        WriteLineFormat(tw, indent, "ConvertToInt64(srcT):\t{0}", Vector.ConvertToInt64(Vector.AsVectorDouble(srcT)));
        WriteLineFormat(tw, indent, "ConvertToUInt64(srcT):\t{0}", Vector.ConvertToUInt64(Vector.AsVectorDouble(srcT)));
    } else if (typeof(T) == typeof(Single)) {
        WriteLineFormat(tw, indent, "ConvertToInt32(srcT):\t{0}", Vector.ConvertToInt32(Vector.AsVectorSingle(srcT)));
        WriteLineFormat(tw, indent, "ConvertToUInt32(srcT):\t{0}", Vector.ConvertToUInt32(Vector.AsVectorSingle(srcT)));
    } else if (typeof(T) == typeof(Int32)) {
        WriteLineFormat(tw, indent, "ConvertToSingle(srcT):\t{0}", Vector.ConvertToSingle(Vector.AsVectorInt32(srcT)));
    } else if (typeof(T) == typeof(UInt32)) {
        WriteLineFormat(tw, indent, "ConvertToSingle(srcT):\t{0}", Vector.ConvertToSingle(Vector.AsVectorUInt32(srcT)));
    } else if (typeof(T) == typeof(Int64)) {
        WriteLineFormat(tw, indent, "ConvertToDouble(srcT):\t{0}", Vector.ConvertToDouble(Vector.AsVectorInt64(srcT)));
    } else if (typeof(T) == typeof(UInt64)) {
        WriteLineFormat(tw, indent, "ConvertToDouble(srcT):\t{0}", Vector.ConvertToDouble(Vector.AsVectorUInt64(srcT)));
    }
    

    2.5.2 控制值的測試

    部分方法具有控制參數,如進行左移位的ShiftLeft。於是最好寫一個迴圈,分別測試不同的控制值。代碼如下。

    #if NET7_0_OR_GREATER
    //ShiftLeft(Vector<Byte>, Int32)  Shifts each element of a vector left by the specified amount.
    //ShiftLeft(Vector<Int16>, Int32) Shifts each element of a vector left by the specified amount.
    //ShiftLeft(Vector<Int32>, Int32) Shifts each element of a vector left by the specified amount.
    //ShiftLeft(Vector<Int64>, Int32) Shifts each element of a vector left by the specified amount.
    //ShiftLeft(Vector<IntPtr>, Int32)    Shifts each element of a vector left by the specified amount.
    //ShiftLeft(Vector<SByte>, Int32) Shifts each element of a vector left by the specified amount.
    //ShiftLeft(Vector<UInt16>, Int32)    Shifts each element of a vector left by the specified amount.
    //ShiftLeft(Vector<UInt32>, Int32) Shifts each element of a vector left by the specified amount.
    //ShiftLeft(Vector<UInt64>, Int32)    Shifts each element of a vector left by the specified amount.
    //ShiftLeft(Vector<UIntPtr>, Int32) Shifts each element of a vector left by the specified amount.
    int[] shiftCounts = new int[] { 1, elementBitSize - 1, elementBitSize, elementBitSize + 1, -1 };
    foreach (int shiftCount in shiftCounts) {
        if (typeof(T) == typeof(Byte)) {
            WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):\t{0}", Vector.ShiftLeft(Vector.AsVectorByte(srcT), shiftCount));
        } else if (typeof(T) == typeof(Int16)) {
            WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):\t{0}", Vector.ShiftLeft(Vector.AsVectorInt16(srcT), shiftCount));
        } else if (typeof(T) == typeof(Int32)) {
            WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):\t{0}", Vector.ShiftLeft(Vector.AsVectorInt32(srcT), shiftCount));
        } else if (typeof(T) == typeof(Int64)) {
            WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):\t{0}", Vector.ShiftLeft(Vector.AsVectorInt64(srcT), shiftCount));
        } else if (typeof(T) == typeof(IntPtr)) {
            WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):\t{0}", Vector.ShiftLeft(Vector.AsVectorNInt(srcT), shiftCount));
        } else if (typeof(T) == typeof(SByte)) {
            WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):\t{0}", Vector.ShiftLeft(Vector.AsVectorSByte(srcT), shiftCount));
        } else if (typeof(T) == typeof(UInt16)) {
            WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):\t{0}", Vector.ShiftLeft(Vector.AsVectorUInt16(srcT), shiftCount));
        } else if (typeof(T) == typeof(UInt32)) {
            WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):\t{0}", Vector.ShiftLeft(Vector.AsVectorUInt32(srcT), shiftCount));
        } else if (typeof(T) == typeof(UInt64)) {
            WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):\t{0}", Vector.ShiftLeft(Vector.AsVectorUInt64(srcT), shiftCount));
        } else if (typeof(T) == typeof(UIntPtr)) {
            WriteLineFormat(tw, indent, "ShiftLeft(srcT, " + shiftCount + "):\t{0}", Vector.ShiftLeft(Vector.AsVectorNUInt(srcT), shiftCount));
        }
    }
    

    2.5.3 out 參數

    有一些方法通過out 參數返回了多個值,如能使數據變寬的 Widen。於是可利用“if塊”來限制不同類型變數的作用域。代碼如下。

    //Widen(Vector<Byte>, Vector<UInt16>, Vector<UInt16>) Widens aVector<Byte> into two Vector<UInt16>instances.
    //Widen(Vector<Int16>, Vector<Int32>, Vector<Int32>) Widens a Vector<Int16> into twoVector<Int32> instances.
    //Widen(Vector<Int32>, Vector<Int64>, Vector<Int64>) Widens a Vector<Int32> into twoVector<Int64> instances.
    //Widen(Vector<SByte>, Vector<Int16>, Vector<Int16>) Widens a Vector<SByte> into twoVector<Int16> instances.
    //Widen(Vector<Single>, Vector<Double>, Vector<Double>) Widens a Vector<Single> into twoVector<Double> instances.
    //Widen(Vector<UInt16>, Vector<UInt32>, Vector<UInt32>) Widens a Vector<UInt16> into twoVector<UInt32> instances.
    //Widen(Vector<UInt32>, Vector<UInt64>, Vector<UInt64>) Widens a Vector<UInt32> into twoVector<UInt64> instances.
    if (typeof(T) == typeof(Single)) {
        Vector<Double> low, high;
        Vector.Widen(Vector.AsVectorSingle(srcT), out low, out high);
        WriteLineFormat(tw, indent, "Widen(srcT).low:\t{0}", low);
        WriteLineFormat(tw, indent, "Widen(srcT).high:\t{0}", high);
    } else if (typeof(T) == typeof(SByte)) {
        Vector<Int16> low, high;
        Vector.Widen(Vector.AsVectorSByte(srcT), out low, out high);
        WriteLineFormat(tw, indent, "Widen(srcT).low:\t{0}", low);
        WriteLineFormat(tw, indent, "Widen(srcT).high:\t{0}", high);
    } else if (typeof(T) == typeof(Int16)) {
        Vector<Int32> low, high;
        Vector.Widen(Vector.AsVectorInt16(srcT), out low, out high);
        WriteLineFormat(tw, indent, "Widen(srcT).low:\t{0}", low);
        WriteLineFormat(tw, indent, "Widen(srcT).high:\t{0}", high);
    } else if (typeof(T) == typeof(Int32)) {
        Vector<Int64> low, high;
        Vector.Widen(Vector.AsVectorInt32(srcT), out low, out high);
        WriteLineFormat(tw, indent, "Widen(srcT).low:\t{0}", low);
        WriteLineFormat(tw, indent, "Widen(srcT).high:\t{0}", high);
    } else if (typeof(T) == typeof(Byte)) {
        Vector<UInt16> low, high;
        Vector.Widen(Vector.AsVectorByte(srcT), out low, out high);
        WriteLineFormat(tw, indent, "Widen(srcT).low:\t{0}", low);
        WriteLineFormat(tw, indent, "Widen(srcT).high:\t{0}", high);
    } else if (typeof(T) == typeof(UInt16)) {
        Vector<UInt32> low, high;
        Vector.Widen(Vector.AsVectorUInt16(srcT), out low, out high);
        WriteLineFormat(tw, indent, "Widen(srcT).low:\t{0}", low);
        WriteLineFormat(tw, indent, "Widen(srcT).high:\t{0}", high);
    } else if (typeof(T) == typeof(UInt32)) {
        Vector<UInt64> low, high;
        Vector.Widen(Vector.AsVectorUInt32(srcT), out low, out high);
        WriteLineFormat(tw, indent, "Widen(srcT).low:\t{0}", low);
        WriteLineFormat(tw, indent, "Widen(srcT).high:\t{0}", high);
    }
    

    2.6 格式化輸出(WriteLineFormat)

    雖然只讀結構體 Vector<T>支持 ToString,能夠輸出各個元素的數值。但在很多時候(例如使用 AndNot 的函數進行二進位運算時),我們需要觀察它的二進位數據,故需要以十六進位的方式來顯示其中的數據,但Vector<T>不支持十六進位格式化(X)。
    於是專門為 Vector<T> 寫了一個重載函數,用於輸出它的十六進位值。

    /// <summary>
    /// Get hex string.
    /// </summary>
    /// <typeparam name="T">Vector value type.</typeparam>
    /// <param name="src">Source value.</param>
    /// <param name="separator">The separator.</param>
    /// <param name="noFixEndian">No fix endian.</param>
    /// <returns>Returns hex string.</returns>
    private static string GetHex<T>(Vector<T> src, string separator, bool noFixEndian) where T : struct {
        Vector<byte> list = Vector.AsVectorByte(src);
        int unitCount = Vector<T>.Count;
        int unitSize = Vector<byte>.Count / unitCount;
        bool fixEndian = false;
        if (!noFixEndian && BitConverter.IsLittleEndian) fixEndian = true;
        StringBuilder sb = new StringBuilder();
        if (fixEndian) {
            // IsLittleEndian.
            for (int i=0; i < unitCount; ++i) {
                if ((i > 0)) {
                    if (!string.IsNullOrEmpty(separator)) {
                        sb.Append(separator);
                    }
                }
                int idx = unitSize * (i+1) - 1;
                for(int j = 0; j < unitSize; ++j) {
                    byte by = list[idx];
                    --idx;
                    sb.Append(by.ToString("X2"));
                }
            }
        } else {
            for (int i = 0; i < Vector<byte>.Count; ++i) {
                byte by = list[i];
                if ((i > 0) && (0 == i % unitSize)) {
                    if (!string.IsNullOrEmpty(separator)) {
                        sb.Append(separator);
                    }
                }
                sb.Append(by.ToString("X2"));
            }
        }
        return sb.ToString();
    }
    
    /// <summary>
    /// WriteLine with format.
    /// </summary>
    /// <typeparam name="T">Vector value type.</typeparam>
    /// <param name="tw">The TextWriter.</param>
    /// <param name="indent">The indent.</param>
    /// <param name="format">The format.</param>
    /// <param name="src">Source value</param>
    private static void WriteLineFormat<T>(TextWriter tw, string indent, string format, Vector<T> src) where T : struct {
        if (null == tw) return;
        string line = indent + string.Format(format, src);
        string hex = GetHex(src, " ", false);
        line += "\t# (" + hex +")";
        tw.WriteLine(line);
    }
    

    三、運行結果

    由於Vector類提供了大量的向量方法,再乘以10種基元類型,導致本程式的輸出信息很長,達到了90多KB。
    為了避免文章過長,於是這裡僅摘錄了主要的輸出信息。

    VectorClassDemo50
    
    IsRelease:	False
    EnvironmentVariable(PROCESSOR_IDENTIFIER):	Intel64 Family 6 Model 142 Stepping 10, GenuineIntel
    Environment.ProcessorCount:	8
    Environment.Is64BitOperatingSystem:	True
    Environment.Is64BitProcess:	True
    Environment.OSVersion:	Microsoft Windows NT 10.0.19044.0
    Environment.Version:	7.0.0
    RuntimeEnvironment.GetRuntimeDirectory:	C:\Program Files\dotnet\shared\Microsoft.NETCore.App\7.0.0\
    RuntimeInformation.FrameworkDescription:	.NET 7.0.0
    BitConverter.IsLittleEndian:	True
    IntPtr.Size:	8
    Vector.IsHardwareAccelerated:	True
    Vector<byte>.Count:	32	# 256bit
    Vector<T>.Assembly.CodeBase:	file:///C:/Program Files/dotnet/shared/Microsoft.NETCore.App/7.0.0/System.Private.CoreLib.dll
    
    [Intrinsics.X86]
    Aes.IsSupported:	True
    Aes.X64.IsSupported:	True
    Avx.IsSupported:	True
    Avx.X64.IsSupported:	True
    Avx2.IsSupported:	True
    Avx2.X64.IsSupported:	True
    AvxVnni.IsSupported:	False
    AvxVnni.X64.IsSupported:	False
    Bmi1.IsSupported:	True
    Bmi1.X64.IsSupported:	True
    Bmi2.IsSupported:	True
    Bmi2.X64.IsSupported:	True
    Fma.IsSupported:	True
    Fma.X64.IsSupported:	True
    Lzcnt.IsSupported:	True
    Lzcnt.X64.IsSupported:	True
    Pclmulqdq.IsSupported:	True
    Pclmulqdq.X64.IsSupported:	True
    Popcnt.IsSupported:	True
    Popcnt.X64.IsSupported:	True
    Sse.IsSupported:	True
    Sse.X64.IsSupported:	True
    Sse2.IsSupported:	True
    Sse2.X64.IsSupported:	True
    Sse3.IsSupported:	True
    Sse3.X64.IsSupported:	True
    Sse41.IsSupported:	True
    Sse41.X64.IsSupported:	True
    Sse42.IsSupported:	True
    Sse42.X64.IsSupported:	True
    Ssse3.IsSupported:	True
    Ssse3.X64.IsSupported:	True
    X86Base.IsSupported:	True
    X86Base.X64.IsSupported:	True
    X86Serialize.IsSupported:	False
    X86Serialize.X64.IsSupported:	False
    
    [Intrinsics.Arm]
    AdvSimd.IsSupported:	False
    AdvSimd.Arm64.IsSupported:	False
    Aes.IsSupported:	False
    Aes.Arm64.IsSupported:	False
    ArmBase.IsSupported:	False
    ArmBase.Arm64.IsSupported:	False
    Crc32.IsSupported:	False
    Crc32.Arm64.IsSupported:	False
    Dp.IsSupported:	False
    Dp.Arm64.IsSupported:	False
    Rdm.IsSupported:	False
    Rdm.Arm64.IsSupported:	False
    Sha1.IsSupported:	False
    Sha1.Arm64.IsSupported:	False
    Sha256.IsSupported:	False
    Sha256.Arm64.IsSupported:	False
    
    -- Single, Vector<Single>.Count=8 --
    srcT:	<-3.4028235E+38, ∞, NaN, -1.2, 0, 1, 2, 4>	# (FF7FFFFF 7F800000 FFC00000 BF99999A 00000000 3F800000 40000000 40800000)
    srcAllOnes:	<NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN>	# (FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF)
    Abs(srcT):	<3.4028235E+38, ∞, NaN, 1.2, 0, 1, 2, 4>	# (7F7FFFFF 7F800000 7FC00000 3F99999A 00000000 3F800000 40000000 40800000)
    Abs(srcAllOnes):	<NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN>	# (7FFFFFFF 7FFFFFFF 7FFFFFFF 7FFFFFFF 7FFFFFFF 7FFFFFFF 7FFFFFFF 7FFFFFFF)
    Add(srcT, src1):	<-3.4028235E+38, ∞, NaN, -0.20000005, 1, 2, 3, 5>	# (FF7FFFFF 7F800000 FFC00000 BE4CCCD0 3F800000 40000000 40400000 40A00000)
    Add(srcT, src2):	<-3.4028235E+38, ∞, NaN, 0.79999995, 2, 3, 4, 6>	# (FF7FFFFF 7F800000 FFC00000 3F4CCCCC 40000000 40400000 40800000 40C00000)
    AndNot(srcT, src1):	<-3.9999998, 2, -3, -2.350989E-39, 0, 0, 2, 2>	# (C07FFFFF 40000000 C0400000 8019999A 00000000 00000000 40000000 40000000)
    AndNot(srcT, src2):	<-0.99999994, 1, -1.5, -1.2, 0, 1, 0, 1.1754944E-38>	# (BF7FFFFF 3F800000 BFC00000 BF99999A 00000000 3F800000 00000000 00800000)
    BitwiseAnd(srcT, src1):	<0.5, 1, 1, 1, 0, 1, 0, 1.1754944E-38>	# (3F000000 3F800000 3F800000 3F800000 00000000 3F800000 00000000 00800000)
    BitwiseAnd(srcT, src2):	<2, 2, 2, 0, 0, 0, 2, 2>	# (40000000 40000000 40000000 00000000 00000000 00000000 40000000 40000000)
    BitwiseOr(srcT, src1):	<NaN, ∞, NaN, -1.2, 1, 1, ∞, ∞>	# (FFFFFFFF 7F800000 FFC00000 BF99999A 3F800000 3F800000 7F800000 7F800000)
    BitwiseOr(srcT, src2):	<-3.4028235E+38, ∞, NaN, NaN, 2, ∞, 2, 4>	# (FF7FFFFF 7F800000 FFC00000 FF99999A 40000000 7F800000 40000000 40800000)
    ...
    Widen(srcT).low:	<-3.4028234663852886E+38, ∞, NaN, -1.2000000476837158>	# (C7EFFFFFE0000000 7FF0000000000000 FFF8000000000000 BFF3333340000000)
    Widen(srcT).high:	<0, 1, 2, 4>	# (0000000000000000 3FF0000000000000 4000000000000000 4010000000000000)
    ...
    
    -- Double, Vector<Double>.Count=4 --
    srcT:	<-1.7976931348623157E+308, ∞, -1.2, 0>	# (FFEFFFFFFFFFFFFF 7FF0000000000000 BFF3333333333333 0000000000000000)
    srcAllOnes:	<NaN, NaN, NaN, NaN>	# (FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF)
    Abs(srcT):	<1.7976931348623157E+308, ∞, 1.2, 0>	# (7FEFFFFFFFFFFFFF 7FF0000000000000 3FF3333333333333 0000000000000000)
    Abs(srcAllOnes):	<NaN, NaN, NaN, NaN>	# (7FFFFFFFFFFFFFFF 7FFFFFFFFFFFFFFF 7FFFFFFFFFFFFFFF 7FFFFFFFFFFFFFFF)
    Add(srcT, src1):	<-1.7976931348623157E+308, ∞, -0.19999999999999996, 1>	# (FFEFFFFFFFFFFFFF 7FF0000000000000 BFC9999999999998 3FF0000000000000)
    Add(srcT, src2):	<-1.7976931348623157E+308, ∞, 0.8, 2>	# (FFEFFFFFFFFFFFFF 7FF0000000000000 3FE999999999999A 4000000000000000)
    AndNot(srcT, src1):	<-3.9999999999999996, 2, -4.4501477170144E-309, 0>	# (C00FFFFFFFFFFFFF 4000000000000000 8003333333333333 0000000000000000)
    AndNot(srcT, src2):	<-0.9999999999999999, 1, -1.2, 0>	# (BFEFFFFFFFFFFFFF 3FF0000000000000 BFF3333333333333 0000000000000000)
    BitwiseAnd(srcT, src1):	<0.5, 1, 1, 0>	# (3FE0000000000000 3FF0000000000000 3FF0000000000000 0000000000000000)
    BitwiseAnd(srcT, src2):	<2, 2, 0, 0>	# (4000000000000000 4000000000000000 0000000000000000 0000000000000000)
    BitwiseOr(srcT, src1):	<NaN, ∞, -1.2, 1>	# (FFFFFFFFFFFFFFFF 7FF0000000000000 BFF3333333333333 3FF0000000000000)
    BitwiseOr(srcT, src2):	<-1.7976931348623157E+308, ∞, NaN, 2>	# (FFEFFFFFFFFFFFFF 7FF0000000000000 FFF3333333333333 4000000000000000)
    ...
    
    -- UInt64, Vector<UInt64>.Count=4 --
    srcT:	<0, 18446744073709551615, 0, 1>	# (0000000000000000 FFFFFFFFFFFFFFFF 0000000000000000 0000000000000001)
    srcAllOnes:	<18446744073709551615, 18446744073709551615, 18446744073709551615, 18446744073709551615>	# (FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF)
    Abs(srcT):	<0, 18446744073709551615, 0, 1>	# (0000000000000000 FFFFFFFFFFFFFFFF 0000000000000000 0000000000000001)
    Abs(srcAllOnes):	<18446744073709551615, 18446744073709551615, 18446744073709551615, 18446744073709551615>	# (FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF)
    Add(srcT, src1):	<1, 0, 1, 2>	# (0000000000000001 0000000000000000 0000000000000001 0000000000000002)
    Add(srcT, src2):	<2, 1, 2, 3>	# (0000000000000002 0000000000000001 0000000000000002 0000000000000003)
    AndNot(srcT, src1):	<0, 18446744073709551614, 0, 0>	# (0000000000000000 FFFFFFFFFFFFFFFE 0000000000000000 0000000000000000)
    AndNot(srcT, src2):	<0, 18446744073709551613, 0, 1>	# (0000000000000000 FFFFFFFFFFFFFFFD 0000000000000000 0000000000000001)
    BitwiseAnd(srcT, src1):	<0, 1, 0, 1>	# (0000000000000000 0000000000000001 0000000000000000 0000000000000001)
    BitwiseAnd(srcT, src2):	<0, 2, 0, 0>	# (0000000000000000 0000000000000002 0000000000000000 0000000000000000)
    BitwiseOr(srcT, src1):	<1, 18446744073709551615, 1, 1>	# (0000000000000001 FFFFFFFFFFFFFFFF 0000000000000001 0000000000000001)
    BitwiseOr(srcT, src2):	<2, 18446744073709551615, 2, 3>	# (0000000000000002 FFFFFFFFFFFFFFFF 0000000000000002 0000000000000003)
    ...
    ShiftLeft(srcT, 1):	<0, 18446744073709551614, 0, 2>	# (0000000000000000 FFFFFFFFFFFFFFFE 0000000000000000 0000000000000002)
    ShiftLeft(srcT, 63):	<0, 9223372036854775808, 0, 9223372036854775808>	# (0000000000000000 8000000000000000 0000000000000000 8000000000000000)
    ShiftLeft(srcT, 64):	<0, 18446744073709551615, 0, 1>	# (0000000000000000 FFFFFFFFFFFFFFFF 0000000000000000 0000000000000001)
    ShiftLeft(srcT, 65):	<0, 18446744073709551614, 0, 2>	# (0000000000000000 FFFFFFFFFFFFFFFE 0000000000000000 0000000000000002)
    ShiftLeft(srcT, -1):	<0, 9223372036854775808, 0, 9223372036854775808>	# (0000000000000000 8000000000000000 0000000000000000 8000000000000000)
    

    完整的測試結果,請運行程式進行查看。
    源碼地址——
    https://github.com/zyl910/BenchmarkVector/tree/main/VectorClassDemo

    參考文獻

    作者:zyl910 出處:http://www.cnblogs.com/zyl910/ 版權聲明:自由轉載-非商用-非衍生-保持署名 | Creative Commons BY-NC-ND 3.0.
    您的分享是我們最大的動力!

    -Advertisement-
    Play Games
    更多相關文章
    • 指定ID 在類中聲明並定義按鈕控制項的起始ID,以控制項的類型和功能對動態控制項ID進行分組,每組最好定義一個自己的起始ID方便管理: #define IDC_CONTROL_START 1000 #define IDC_BTN_START IDC_CONTROL_START+100 #define ID ...
    • 以python 3為例關於迴圈中經常出現賦值問題的幾個形式(要賦值的變數a,迴圈變數b)就比如for i in range(n): 相對於b來說 1:a += b 是對每次b在迴圈過程中的值進行求和,每次迴圈中b與b之間沒有聯繫 2:b += b 是將每次b的值繼續帶入下一次迴圈中,會對下一次迴圈的 ...
    • 1.1 冪等性的概念 Methods can also have the property of "idempotence" in that (aside from error or expiration issues) the side-effects of N > 0 identical req ...
    • 遞歸方式基本思想: 1、當待處理節點非空時,判斷其左右孩子是否不同時為空:若是,轉到2、否則分別遞歸調用左右子樹進行操作。 2、新建一個輔助結點,執行交換操作。 3、遞歸調用非空的左右子樹進行操作。 BiTree *exchangeChild(BiTree *&T){ if(T==null) ret ...
    • .在上一節我們實現的 MyVector存在哪些問題? 問題1 現在有Student類 class Student{ public: Student(){cout<<"構造Student對象"<<endl;} ~Student(){cout<<"析構Student對象"<<endl;} private ...
    • 哈夫曼樹 1.概念: 給定n個權值最為n個葉子的節點,構建成一顆二叉樹。如果次樹的帶權路徑長度最小,則稱此二叉樹為最優二叉樹,也叫哈夫曼樹。 WLP:帶權路徑長度 公式: **Wk:**第k個葉子的節點權值 **Lk:**根節點到第k個葉子的節點長度 例如下列二叉樹: 給定4個葉子節點,權值分別為{ ...
    • JZ79 判斷是不是平衡二叉樹 描述 輸入一棵節點數為 n 二叉樹,判斷該二叉樹是否是平衡二叉樹。 在這裡,我們只需要考慮其平衡性,不需要考慮其是不是排序二叉樹 平衡二叉樹(Balanced Binary Tree),具有以下性質:它是一棵空樹或它的左右兩個子樹的高度差的絕對值不超過1,並且左右兩個 ...
    • [C# 中的序列化與反序列化](.NET 源碼學習) 關鍵詞:序列化(概念與分析) 三種序列化(底層原理 源碼) Stream(底層原理 源碼) 反射(底層原理 源碼) 假如有一天我們要在在淘寶上買桌子,桌子這種很不規則不東西,該怎麼從一個城市運輸到另一個城市,這時候一般都會把它拆掉成板子,再裝到箱 ...
    一周排行
      -Advertisement-
      Play Games
    • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
    • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
    • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
    • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
    • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
    • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
    • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
    • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
    • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
    • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...