跟我學Python圖像處理丨帶你掌握傅里葉變換原理及實現

来源:https://www.cnblogs.com/huaweiyun/archive/2022/09/24/16725702.html
-Advertisement-
Play Games

摘要:傅里葉變換主要是將時間域上的信號轉變為頻率域上的信號,用來進行圖像除噪、圖像增強等處理。 本文分享自華為雲社區《[Python圖像處理] 二十二.Python圖像傅里葉變換原理及實現》,作者:eastmount。 本文主要講解圖像傅里葉變換的相關內容,在數字圖像處理中,有兩個經典的變換被廣泛應 ...


摘要:傅里葉變換主要是將時間域上的信號轉變為頻率域上的信號,用來進行圖像除噪、圖像增強等處理。

本文分享自華為雲社區《[Python圖像處理] 二十二.Python圖像傅里葉變換原理及實現》,作者:eastmount。

本文主要講解圖像傅里葉變換的相關內容,在數字圖像處理中,有兩個經典的變換被廣泛應用——傅里葉變換和霍夫變換。其中,傅里葉變換主要是將時間域上的信號轉變為頻率域上的信號,用來進行圖像除噪、圖像增強等處理。

圖像傅里葉變換原理

傅里葉變換(Fourier Transform,簡稱FT)常用於數字信號處理,它的目的是將時間域上的信號轉變為頻率域上的信號。隨著域的不同,對同一個事物的瞭解角度也隨之改變,因此在時域中某些不好處理的地方,在頻域就可以較為簡單的處理。同時,可以從頻域里發現一些原先不易察覺的特征。傅里葉定理指出“任何連續周期信號都可以表示成(或者無限逼近)一系列正弦信號的疊加。”

下麵引用李老師“Python+OpenCV圖像處理”中的一個案例,非常推薦同學們去學習。如下圖所示,他將某飲料的製作過程的時域角度轉換為頻域角度。

繪製對應的時間圖和頻率圖如下所示:

傅里葉公式如下,其中w表示頻率,t表示時間,為複變函數。它將時間域的函數表示為頻率域的函數f(t)的積分。

傅里葉變換認為一個周期函數(信號)包含多個頻率分量,任意函數(信號)f(t)可通過多個周期函數(或基函數)相加合成。從物理角度理解,傅里葉變換是以一組特殊的函數(三角函數)為正交基,對原函數進行線性變換,物理意義便是原函數在各組基函數的投影。如下圖所示,它是由三條正弦曲線組合成。

傅里葉變換可以應用於圖像處理中,經過對圖像進行變換得到其頻譜圖。從譜頻圖裡頻率高低來表徵圖像中灰度變化劇烈程度。圖像中的邊緣信號和雜訊信號往往是高頻信號,而圖像變化頻繁的圖像輪廓及背景等信號往往是低頻信號。這時可以有針對性的對圖像進行相關操作,例如圖像除噪、圖像增強和銳化等。

二維圖像的傅里葉變換可以用以下數學公式(15-3)表達,其中f是空間域(Spatial Domain))值,F是頻域(Frequency Domain)值

對上面的傅里葉變換有了大致的瞭解之後,下麵通過Numpy和OpenCV分別講解圖像傅里葉變換的演算法及操作代碼。

二.Numpy實現傅里葉變換

Numpy中的 FFT包提供了函數 np.fft.fft2()可以對信號進行快速傅里葉變換,其函數原型如下所示,該輸出結果是一個複數數組(Complex Ndarry)。

fft2(a, s=None, axes=(-2, -1), norm=None)

  • a表示輸入圖像,陣列狀的複雜數組
  • s表示整數序列,可以決定輸出數組的大小。輸出可選形狀(每個轉換軸的長度),其中s[0]表示軸0,s[1]表示軸1。對應fit(x,n)函數中的n,沿著每個軸,如果給定的形狀小於輸入形狀,則將剪切輸入。如果大於則輸入將用零填充。如果未給定’s’,則使用沿’axles’指定的軸的輸入形狀
  • axes表示整數序列,用於計算FFT的可選軸。如果未給出,則使用最後兩個軸。“axes”中的重覆索引表示對該軸執行多次轉換,一個元素序列意味著執行一維FFT
  • norm包括None和ortho兩個選項,規範化模式(請參見numpy.fft)。預設值為無

Numpy中的fft模塊有很多函數,相關函數如下:

#計算一維傅里葉變換
numpy.fft.fft(a, n=None, axis=-1, norm=None)
#計算二維的傅里葉變換
numpy.fft.fft2(a, n=None, axis=-1, norm=None)
#計算n維的傅里葉變換
numpy.fft.fftn()
#計算n維實數的傅里葉變換
numpy.fft.rfftn()
#返回傅里葉變換的採樣頻率
numpy.fft.fftfreq()
#將FFT輸出中的直流分量移動到頻譜中央
numpy.fft.shift()

下麵的代碼是通過Numpy庫實現傅里葉變換,調用np.fft.fft2()快速傅里葉變換得到頻率分佈,接著調用np.fft.fftshift()函數將中心位置轉移至中間,最終通過Matplotlib顯示效果圖。

# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
#讀取圖像
img = cv.imread('test.png', 0)
#快速傅里葉變換演算法得到頻率分佈
f = np.fft.fft2(img)
#預設結果中心點位置是在左上角,
#調用fftshift()函數轉移到中間位置
fshift = np.fft.fftshift(f) 
#fft結果是複數, 其絕對值結果是振幅
fimg = np.log(np.abs(fshift))
#展示結果
plt.subplot(121), plt.imshow(img, 'gray'), plt.title('Original Fourier')
plt.axis('off')
plt.subplot(122), plt.imshow(fimg, 'gray'), plt.title('Fourier Fourier')
plt.axis('off')
plt.show()

輸出結果如圖15-2所示,左邊為原始圖像,右邊為頻率分佈圖譜,其中越靠近中心位置頻率越低,越亮(灰度值越高)的位置代表該頻率的信號振幅越大。

三.Numpy實現傅里葉逆變換

下麵介紹Numpy實現傅里葉逆變換,它是傅里葉變換的逆操作,將頻譜圖像轉換為原始圖像的過程。通過傅里葉變換將轉換為頻譜圖,並對高頻(邊界)和低頻(細節)部分進行處理,接著需要通過傅里葉逆變換恢復為原始效果圖。頻域上對圖像的處理會反映在逆變換圖像上,從而更好地進行圖像處理。

圖像傅里葉變化主要使用的函數如下所示:

#實現圖像逆傅里葉變換,返回一個複數數組
numpy.fft.ifft2(a, n=None, axis=-1, norm=None)
#fftshit()函數的逆函數,它將頻譜圖像的中心低頻部分移動至左上角
numpy.fft.fftshift()
#將複數轉換為0至255範圍
iimg = numpy.abs(逆傅里葉變換結果)

下麵的代碼分別實現了傅里葉變換和傅里葉逆變換。

# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
#讀取圖像
img = cv.imread('Lena.png', 0)
#傅里葉變換
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
res = np.log(np.abs(fshift))
#傅里葉逆變換
ishift = np.fft.ifftshift(fshift)
iimg = np.fft.ifft2(ishift)
iimg = np.abs(iimg)
#展示結果
plt.subplot(131), plt.imshow(img, 'gray'), plt.title('Original Image')
plt.axis('off')
plt.subplot(132), plt.imshow(res, 'gray'), plt.title('Fourier Image')
plt.axis('off')
plt.subplot(133), plt.imshow(iimg, 'gray'), plt.title('Inverse Fourier Image')
plt.axis('off')
plt.show()

輸出結果如圖15-4所示,從左至右分別為原始圖像、頻譜圖像、逆傅里葉變換轉換圖像。

四.OpenCV實現傅里葉變換

OpenCV 中相應的函數是cv2.dft()和用Numpy輸出的結果一樣,但是是雙通道的。第一個通道是結果的實數部分,第二個通道是結果的虛數部分,並且輸入圖像要首先轉換成 np.float32 格式。其函數原型如下所示:

dst = cv2.dft(src, dst=None, flags=None, nonzeroRows=None)

  • src表示輸入圖像,需要通過np.float32轉換格式
  • dst表示輸出圖像,包括輸出大小和尺寸
  • flags表示轉換標記,其中DFT _INVERSE執行反向一維或二維轉換,而不是預設的正向轉換;DFT _SCALE表示縮放結果,由陣列元素的數量除以它;DFT _ROWS執行正向或反向變換輸入矩陣的每個單獨的行,該標誌可以同時轉換多個矢量,並可用於減少開銷以執行3D和更高維度的轉換等;DFT _COMPLEX_OUTPUT執行1D或2D實數組的正向轉換,這是最快的選擇,預設功能;DFT _REAL_OUTPUT執行一維或二維複數陣列的逆變換,結果通常是相同大小的複數數組,但如果輸入數組具有共軛複數對稱性,則輸出為真實數組
  • nonzeroRows表示當參數不為零時,函數假定只有nonzeroRows輸入數組的第一行(未設置)或者只有輸出數組的第一個(設置)包含非零,因此函數可以處理其餘的行更有效率,並節省一些時間;這種技術對計算陣列互相關或使用DFT捲積非常有用

註意,由於輸出的頻譜結果是一個複數,需要調用cv2.magnitude()函數將傅里葉變換的雙通道結果轉換為0到255的範圍。其函數原型如下:

cv2.magnitude(x, y)

  • x表示浮點型X坐標值,即實部
  • y表示浮點型Y坐標值,即虛部
    最終輸出結果為幅值,即:

完整代碼如下所示:

# -*- coding: utf-8 -*-
import numpy as np
import cv2
from matplotlib import pyplot as plt
#讀取圖像
img = cv2.imread('Lena.png', 0)
#傅里葉變換
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
#將頻譜低頻從左上角移動至中心位置
dft_shift = np.fft.fftshift(dft)
#頻譜圖像雙通道複數轉換為0-255區間
result = 20*np.log(cv2.magnitude(dft_shift[:,:,0], dft_shift[:,:,1]))
#顯示圖像
plt.subplot(121), plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(result, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

輸出結果如圖15-5所示,左邊為原始“Lena”圖,右邊為轉換後的頻譜圖像,並且保證低頻位於中心位置。

五.OpenCV實現傅里葉逆變換

在OpenCV 中,通過函數cv2.idft()實現傅里葉逆變換,其返回結果取決於原始圖像的類型和大小,原始圖像可以為實數或複數。其函數原型如下所示:

dst = cv2.idft(src[, dst[, flags[, nonzeroRows]]])

  • src表示輸入圖像,包括實數或複數
  • dst表示輸出圖像
  • flags表示轉換標記
  • nonzeroRows表示要處理的dst行數,其餘行的內容未定義(請參閱dft描述中的捲積示例)

完整代碼如下所示:

# -*- coding: utf-8 -*-
import numpy as np
import cv2
from matplotlib import pyplot as plt
#讀取圖像
img = cv2.imread('Lena.png', 0)
#傅里葉變換
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
dftshift = np.fft.fftshift(dft)
res1= 20*np.log(cv2.magnitude(dftshift[:,:,0], dftshift[:,:,1]))
#傅里葉逆變換
ishift = np.fft.ifftshift(dftshift)
iimg = cv2.idft(ishift)
res2 = cv2.magnitude(iimg[:,:,0], iimg[:,:,1])
#顯示圖像
plt.subplot(131), plt.imshow(img, 'gray'), plt.title('Original Image')
plt.axis('off')
plt.subplot(132), plt.imshow(res1, 'gray'), plt.title('Fourier Image')
plt.axis('off')
plt.subplot(133), plt.imshow(res2, 'gray'), plt.title('Inverse Fourier Image')
plt.axis('off')
plt.show()

輸出結果如圖15-6所示,第一幅圖為原始“Lena”圖,第二幅圖為傅里葉變換後的頻譜圖像,第三幅圖為傅里葉逆變換,頻譜圖像轉換為原始圖像的過程。

六.總結

傅里葉變換的目的並不是為了觀察圖像的頻率分佈(至少不是最終目的),更多情況下是為了對頻率進行過濾,通過修改頻率以達到圖像增強、圖像去噪、邊緣檢測、特征提取、壓縮加密等目的。下一篇文章,作者將結合傅里葉變換和傅里葉逆變換講解它的應用。

 

點擊關註,第一時間瞭解華為雲新鮮技術~


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 簡述 類型:結構型 目的:通過抽離出多個維度相互組合(聚合)來代替繼承,簡化系統。 話不多說,看個優化案例。 優化案例 現有系統中,對於畫面視窗的邊框有一套樣式來控制是否有圓角。因為新的需求,需要增加兩套樣式,一套控制邊框線條的顏色(紅、黃、藍),一套控制邊框有無陰影。我們來看看幾種實現方式。 最初 ...
  • ##springboot中使用mybatisplus自帶插件實現分頁 ####1.導入mybatisplus分頁依賴 <dependency> <groupId>com.baomidou</groupId> <artifactId>mybatis-plus-extension</artifactId ...
  • OpenFeign 全稱 Spring Cloud OpenFeign,它是 Spring 官方推出的一種聲明式服務調用與負載均衡組件,它的出現就是為了替代進入停更維護狀態的 Feign。Spring Cloud openfeign對Feign進行了增強,使其支持Spring MVC註解,另外還整合... ...
  • ###一、介紹 Beautiful Soup 是一個可以從HTML或XML文件中提取數據的Python庫.它能夠通過你喜歡的轉換器實現慣用的文檔導航,查找,修改文檔的方式.Beautiful Soup 3 目前已經停止開發,官網推薦在現在的項目中使用Beautiful Soup 4, 移植到BS4 ...
  • Spring框架支持六個作用域,其中四個只有在Web中才能用到,在此我們只說明前兩種作用域。 下麵是所有的六種作用域: ScopeDescription singleton (Default) Scopes a single bean definition to a single object in ...
  • 2022-09-24 創建了一個Django項目後,進行測試,輸入指令: python manage.py runserver 出現瞭如下問題: 我還想著,Django模塊通過安裝“pip install django”導入了好幾遍,嘗試了幾次都是這樣。後來發現,是虛擬環境中沒有Django模塊的文 ...
  • 事情是這樣的,罪惡的資本家老闆,快下班了給我發一個壓縮包,讓我把數據發給客戶微信,搞完就可以下班了,我心想這麼好,一個文件不是讓我直接就提前下班嗎,萬萬沒想到… 我就知道,萬惡的資本家怎麼可能放棄剝削我的機會,我打開一看,一個壓縮包裡面放了幾百個表格,一個表格裡面N個人,幾十萬條數據,三個微信好友一 ...
  • 一、VSCode 創建Django 工程 VSCode 官方: https://code.visualstudio.com 1 mysite(項目名),創建Django 項目,可以和虛擬環境放在同一目錄,也可以放在虛擬環境的文件夾里。 django-admin startproject mysite ...
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...