DP 優化方法合集

来源:https://www.cnblogs.com/Jerry-Jiang/archive/2022/08/09/16565671.html
-Advertisement-
Play Games

0. 前言 寫完這篇文章後發現自己對於 DP 的優化一竅不通,所以補了補 DP 的一些優化,寫篇 blog 總結一下。 1. 單調隊列/單調棧優化 1.2 演算法介紹 這應該算是最基礎的 DP 優化方法了。 顧名思義,單調隊列/單調棧優化 DP 就是保持容器內元素的單調性,以達成減少冗餘狀態的目的。 ...


0. 前言

寫完這篇文章後發現自己對於 DP 的優化一竅不通,所以補了補 DP 的一些優化,寫篇 blog 總結一下。

1. 單調隊列/單調棧優化

1.2 演算法介紹

這應該算是最基礎的 DP 優化方法了。

顧名思義,單調隊列/單調棧優化 DP 就是保持容器內元素的單調性,以達成減少冗餘狀態的目的。

舉單調隊列的例子來說,當一個元素的兩種屬性(例如下標和權值)都優於另一元素時,就可以用此元素更換掉另一元素。這也正是 OI 界流傳說法“當一個人比你小且比你強時,你就被彈出單調隊列了”的原理。

我們以下麵的例題作為例子來更具體地闡述這個演算法。

1.3 適用範圍&區別

一般來說,形如 \(f(i)=\max(f(j)+F(i)+F(j))\) 的式子都可以考慮適用單調隊列/單調棧進行優化。(其中 \(F(i)\)\(F(j)\) 表示和 \(i,j\) 有關的函數)

應該大部分人剛學這兩種東西的時候都有一種疑惑:啥時候用單調隊列,啥時候用單調棧呢?(至少我有

其實,它們兩的本質區別還是其結構上的區別。單調棧通常用新加進來的東西替換掉一些棧頂元素,而單調隊列是可能兩端同時修改的。

在一下例題中我也會著重分析兩者的使用。

1.4 例題

I. P1886 滑動視窗

題目鏈接

這個不是優化 DP,就是最經典的裸的不能再裸的單調隊列。

大力單調隊列即可,時間複雜度 \(O(n)\)

II. CF372C Watching Fireworks is Fun

題目鏈接
OI Wili 推薦的題

題目大意:一個數軸上有 \(n\) 個點,每個點在位置 \(a_i\),有 \(m\) 個煙花要放,開始時間 \(t_i\)。你一開始的位置隨便,每一單位時間可以最多走 \(d\) 這麼多的距離,在 \(x\) 看到第 \(i\) 個煙花的快樂值為 \(b_i-|a_i-x|\),求最大的總代價。

數據範圍:\(n\leq 150000,m\leq 300\)

看到這個數據範圍就知道大概是 \(O(nm)\) 的演算法(最多要卡卡常)。

我們容易設計出 DP 狀態 \(f(i,j)\) 表示放第 \(i\) 個煙花,位置在 \(j\) 時的最大快樂值。

轉移:\(f(i,j)=\max_{j-(t_i-t_{i-1})\cdot d_i\leq k\leq j+(t_i-t_{i-1})\cdot d_i}(f(i-1,k)+b_i-|a_i-j|)\)

接下來就需要對 DP 進行優化了,首先因為當 \(i\)\(j\) 確定時 \(b_i-|a_i-j|\) 可以看做常數,剩下的就可以用單調隊列去維護了。

註:本題使用單調隊列的原因為 \(k\) 兩邊都有限制,需要頭尾都更新。

時間複雜度 \(O(nm)\)

代碼

III. P3572 [POI2014]PTA-Little Bird

題目鏈接

IV. P1973 [NOI2011] NOI 嘉年華

題目鏈接

V. P2254 [NOI2005] 瑰麗華爾茲

題目鏈接

2. 斜率優化

斜率優化自己學過好幾遍,也聽 dalao 講過,但是總是感覺半懂不懂的。這次索性把它給搞徹底了罷……

2. 1 演算法介紹

以 OI Wiki 上的例題為例。

題目大意:有 \(n\) 個玩具,每個玩具有一個價值 \(c_i\)。你需要將這 \(n\) 個玩具分成若幹段,設一段 \([l,r]\) 的代價為 \((r-l+\sum_{i=l}^rc_i-L)^2\),其中 \(L\) 為常數,求最小的總代價。

數據範圍:\(n\leq 5\times 10^4\)

使用 DP 優化的一般思路:先設計出一個超時的 DP 再優化。

\(f_i\) 表示前 \(i\) 個玩具的代價,那麼得出轉移方程為:

\[f_i=\min_{j=0}^{i-1}\{f_j+(i-j-1+\sum_{k=j+1}^ic_k+L)^2\} \]

用首碼和表示後即為:

\[f_i=\min_{j=0}^{i-1}\{f_j+(i-j-1+S_i-S_j+c_k+L)^2\} \]

其中 \(S_i=\sum_{k=1}^ic_k\)

這就是朴素的 \(O(n^2)\) 的 DP。

下麵就要優化了,不過有個問題:DP 跟斜率有什麼關係呢?

考慮將 DP 轉移方程轉化為解析幾何中直線的斜截式方程 \(y=kx+b\) 的形式。

我們先將只和 \(i,j\) 有關的歸為一類,常數歸為一類:\(a_i=s_i+i,b_i=s_i+i+L+1\),然後原式可以寫成:

\[f_i=\min_{j=0}^{i-1}\{f_j+(a_i-a_j)^2\} \]

然後可以令 \(y=f_j+b_j^2,k=2a_i,x=b_j\)。(P.S. 這個應該只要滿足 \(y=kx+b\) 都可以?)

此時需要最小化直線的截距,先將這些 \((x,y)\) 表示在平面直角坐標系中:

image

可以看到藍線連成了一個下凸殼,第一個紅線碰到的點使截距最小。

下麵的問題就是怎樣維護這個凸包,發現存在斜率遞增,所以可以用單調隊列來維護。

代碼

2.2 例題

I. P4072 [SDOI2016]征途

題目鏈接

998244352. 參考資料

第 1 章:

第 2 章:

本文來自博客園,作者:Jerry_Jiang,轉載請註明原文鏈接:https://www.cnblogs.com/Jerry-Jiang/p/16565671.html


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 技術 Leader 是一個對綜合素質要求非常高的崗位,不僅要有解具體技術問題的架構能力,還要具備團隊管理的能力,更需要引領方向帶領團隊/平臺穿越迷茫進階到下一個境界的能力。所以通常來說技術 Leader 的技能是虛實結合的居多,繁雜的工作偏多。為此我把自己在工作中經常用到的思考技巧也做了一個整理。 ...
  • 社交是一種永恆的需求,既有生存層面的必要,也有情感上的渴求。而隨著互聯網開始統治這個時代,社交被搬到了網上,並且越來越成為主流,社交也在發展成互聯網產品的一個重要賽道。本文將介紹Soul是如何破解Z世代社交密碼的。 文章目錄 01 年輕人的社交密碼 02 為什麼對年輕人來說,Soul是那個對的產品? ...
  • 統一術語(戰略設計) 我們將通過DDD完成業務與技術的完整落地 統一 領域模型術語 DDD模式名稱 技術 技術設計術語 技術術語 技術設計模式 業務 領域模型術語 DDD模式名稱 業務術語 設計無關的業務術語 清晰的事件流 DDD 領域驅動設計是一個有關軟體開發的方法論,它提出基於領域開發的開發模式 ...
  • 3、ElasticSearch搜索結果處理 3.1、排序 Elasticsearch預設是根據相關度算分(_score)來排序,但是也支持自定義方式對搜索結果排序,可以排序的欄位類型有如下幾種 keyword類型 數值類型 地理坐標類型 日期類型 ... 3.1.1、普通欄位排序 keyword、數 ...
  • @Autowired註解是spring用來支持依賴註入的核心利器之一,但是我們或多或少都會遇到required a single bean, but 2 were found(2可能是其他數字)的問題,接下來我們從源碼的角度去看為什麼會出現這個問題,以及這個問題的解法是什麼? 首先我們寫一個demo ...
  • 2、ElasticSearch高級搜索 Elasticsearch提供了基於JSON的DSL(Domain Specific Language)來定義查詢。常見的查詢類型如下所示 ①、查詢所有 查詢出所有數據,一般測試用;例如 match_all 如下圖所示 ②、全文檢索(full text)查詢 ...
  • Java多線程基礎入門 參考:b站-狂神-多線程詳解 練習與演示代碼見gitee:https://gitee.com/yuhaozhee/java-learning-record ...
  • 1.ObjectPostProcessor 使用 前面介紹了 ObjectPostProcessor的基本概念。相信讀者已經明白,所有的過濾器都由對應的配置類來負責創建,配置類在將過濾器創建成功之後,會調用父類的postProcess方法,該 方法最終會調用到CompositeObjectPostP ...
一周排行
    -Advertisement-
    Play Games
  • 前言 JSON Web Token(JWT)是一個非常輕巧的規範。這個規範允許我們使用 JWT 在用戶和伺服器之間傳遞安全可靠的信息。一個 JWT 實際上就是一個字元串,它由三部分組成,頭部、載荷與簽名。前兩部分需要經過 Base64 編碼,後一部分通過前兩部分 Base64 編碼後再加密而成。針對 ...
  • 一:背景 1. 講故事 今天本來想寫一篇 非托管泄露 的生產事故分析,但想著昨天就上了一篇非托管文章,連著寫也沒什麼意思,換個口味吧,剛好前些天有位朋友也找到我,說他們的拍攝監控軟體卡死了,讓我幫忙分析下為什麼會卡死,聽到這種軟體,讓我不禁想起了前些天 在程式員桌子上安裝監控 的新聞,參考如下: 我 ...
  • 文章目錄 介紹 ABP的依賴註入系統是基於Microsoft的依賴註入擴展庫(Microsoft.Extensions.DependencyInjection nuget包)開發的。所以我們採用dotnet自帶的註入方式也是支持的。 由於ABP是一個模塊化框架,因此每個模塊都定義它自己的服務併在它自 ...
  • 前言 外觀模式,英文名稱是:Facade Pattern。我們先從名字上來理解一下“外觀模式”。我看到了“外觀”這個詞語,就想到了“外表”這個詞語,兩者有著很相近的意思。就拿談戀愛來說,“外表”很重要,如果第一眼看著很舒服、有眼緣,那就有交往下去的可能。如果長的“三寸釘、枯樹皮”,估計就夠嗆了。在這 ...
  • 模擬.NET實際應用場景,綜合應用三個主要知識點:一是使用dnSpy反編譯第三庫及調試,二是使用Lib.Harmony庫實現第三庫攔截、偽造,三是實現同一個庫支持多版本同時引用。 ...
  • 通過strimzi部署的kafka集群,如何部署prometheus+grafana去監控呢?官方文檔信息量太大,即便照著做也可能失敗,這裡有一份詳細的保姆級操作指南,助您成功部署監控服務 ...
  • 在工具類中封裝getBean,使用哪個介面來實現 實事上,在工具類中,實現BeanFactoryPostProcessor和ApplicationContextAware介面後,使用它們構造方法里的對象ConfigurableListableBeanFactory和ApplicationContex ...
  • 1章:系統基礎信息模塊詳解 通過第三方模塊獲取伺服器的基本性能、塊設備、網卡介面、網路地址庫等信息。 1.1 系統性能模塊psutil:獲取系統性能信息、記憶體信息、磁碟信息、網路信息、用戶信息等。 1.2 IP地址處理模塊IPy: 處理IP地址,網段等。 1.3 DNS處理模塊dnspython: ...
  • EasyExcel動態表頭導出(支持多級表頭) 在很多業務場景中,都會應用到動態表頭的導出,也會涉及到多級表頭的導出,如下圖所示 通過EasyExcel,我們可以快速實現這一需求,具體代碼如下 DynamicHeader import java.util.List; /** *@Author: <a ...
  • 基於java線上婚紗定製系統設計與實現,可適用於線上婚紗攝影預定系統,基於web的婚紗影樓管理系統設計,基於web的婚紗影樓管理系統設計,婚紗攝影網系統,婚紗攝影網站系統,婚紗攝影網站系統,婚紗系統,婚紗管理系統等等; ...