程式分析與優化 - 7 靜態單賦值(SSA)

来源:https://www.cnblogs.com/zhouronghua/archive/2022/06/19/16390138.html
-Advertisement-
Play Games

本章是系列文章的第七章,終於來到了鼎鼎大名的SSA,SSA是編譯器領域最偉大的發明之一,也是影響最廣的發明。 本文中的所有內容來自學習DCC888的學習筆記或者自己理解的整理,如需轉載請註明出處。周榮華@燧原科技 7.1 控制流圖回顧 對下麵的c代碼保存成7.1.cc: 1 int max(int ...


本章是系列文章的第七章,終於來到了鼎鼎大名的SSA,SSA是編譯器領域最偉大的發明之一,也是影響最廣的發明。

本文中的所有內容來自學習DCC888的學習筆記或者自己理解的整理,如需轉載請註明出處。周榮華@燧原科技

7.1 控制流圖回顧

對下麵的c代碼保存成7.1.cc:

1 int max(int a, int b) {
2   int ans = a;
3   if (b > a) {
4     ans = b;
5   }
6   return ans;
7 }

 

 

直接用clang生成bc → dot → svg,最終svg的結果如下:

 

 

如果經過一輪opt的優化“opt -mem2reg 7.1.ll -o 7.1.1.bc”之後的結果,就變成了這樣(註意,需要刪除ll裡面的optnone屬性,否則opt不會生效):

 

 除了我們本來準備跑的mem2reg的pass外,優化前後最後一個BB里是不是還多了一個phi函數?

 

7.1.1 靜態單賦值範式(SSA Form)

靜態單賦值,字面意思是對靜態的變數只有一次賦值點。這是現在所有編譯器都廣泛使用的屬性,也是編譯器歷史上最具有突破性意義的屬性,簡化了各種分析和優化的過程。

1991年SSA的奠基論文被引用打到2800+次,這還是截止2019年的數據,這個引用次數每年還在增加。

幾乎每本講編譯器的書都會說到SSA。google學術上用SSA能搜到5000+個結果。

每年來自全世界的編譯器專家,都會在SSA研討會上慶祝一次SSA的誕生。

和靜態單賦值對應的是動態單賦值,也就是程式執行過程中,每個變數只能賦值一次。和動態單賦值不同,靜態單賦值,只要求每個變數的賦值程式點只能有一個,這個程式點可以出現在迴圈內部(這意味著動態執行過程中這個程式點會多次執行)。

7.2 從SSA來到SSA去

7.2.1 將線性代碼轉換成SSA Form

如果一個程式沒有任何分叉,則稱這個程式是線性代碼。

例如下麵的代碼:

1 double baskhara(double a, double b, double c) {
2   double delta = b * b - 4 * a * c;
3   double sqrDelta = sqrt(delta);
4   double root = (b + sqrDelta) / 2 * a;
5   return root;
6 }

 

 

其實它本身就是符合SSA定義的(每個變數只定義一次),但一般經過opt轉換之後的代碼是這樣:

 1 define double @baskhara(double %a, double %b, double %c) {
 2   %1 = fmul double %b, %b
 3   %2 = fmul double 4.000000e+00, %a
 4   %3 = fmul double %2, %c
 5   %4 = fsub double %1, %3
 6   %5 = call double @sqrt(double %4)
 7   %6 = fadd double %b, %5
 8   %7 = fdiv double %6, 2.000000e+00
 9   %8 = fmul double %7, %a
10   ret double %8
11 }

 

 

線性代碼轉換成SSA範式的的演算法比較直接:

 1 for each variable a:
 2     Count[a] = 0
 3     Stack[a] = [0]
 4 rename_basic_block(B) =
 5     for each instruction S in block B:
 6         for each use of a variable x in S:
 7             i = top(Stack[x])
 8             replace the use of x with xi
 9         for each variable a that S defines
10             count[a] = Count[a] + 1
11             i = Count[a]
12             push i onto Stack[a]
13             replace definition of a with ai

 

 

例如,下麵的c代碼:

1 a = x + y;
2 b = a - 1;
3 a = y + b;
4 b = 4 * x;
5 a = a + b;

 

 

經過SSA轉換之後會變成這樣:

1 a1 = x0 + y0;
2 b1 = a1 - 1;
3 a2 = y0 + b1;
4 b2 = 4 * x0;
5 a3 = a2 + b2;

 

 

7.2.2 Phi函數

前面說了線性代碼的SSA轉換過程,那非線性代碼應該怎麼處理呢?

例如下麵的控制流圖,SSA轉換之後L5處使用的b是哪一個b?:

 

 

答案是要看情況,如果控制流圖上從L4執行到L5,則L5處的b應該是b1;如果是從L2執行到L5,則L5處的b應該是b0。

為了處理這種情況,需要引入phi函數(φ),φ函數會根據路徑做選擇,根據進入φ函數的路徑選擇不同的定義。

插入φ函數之後的SSA轉換結果如下:

 

 

φ函數會插入到每個基本塊的最開始地方,對N個變數生成N個φ函數,φ函數的參數個數取決於執行到該基本塊的直接前驅有幾個。

 

 

7.2.3 臨界邊

如果一條邊的起始點BB有多個直接後繼BB,終止點的BB有多個前驅BB,則稱為該邊為臨界邊。

7.2.4 臨界邊分裂

在臨界邊上插入一個空的BB(這個BB只有一個簡單的goto語句),來解決臨界邊的上的φ函數自動註入問題。

7.2.5 φ函數的插入策略

  • 存在一個基本塊x包含b的定義
  • 存在一個非x的基本塊y包含b的定義
  • 存在至少一條路徑Pxz從x到z
  • 存在至少一條路徑Pyz從y到z
  • Pyz和Pxz除了z節點外,沒有其他公共節點
  • z不會同時出現在Pxz和Pyz路徑中間,但可以出現在其中一條路徑的中間

7.2.6 SSA範式的支配屬性

在一個有根的有向圖中,d支配n的意思是所有從根節點到n的路徑都通過d。

在嚴格SSA範式(嚴格的意思是所有變數都是在使用前初始化)程式中,每個變數的定義都支配它的使用:

在基本塊n中,如果x是φ函數的第i個參數,則x的定義支配n的第3個前驅。

在一個使用x的不存在φ函數的基本塊n中,x的定義支配基本塊n。

7.2.7 支配前沿(The Dominance Frontier)

一個節點x嚴格支配節點w,當且僅當x支配w,並且x≠w。

節點x的支配前沿是所有具有下麵屬性的節點w的集合:x支配w的前驅,但不嚴格支配w。

支配前沿策略:如果節點x函數變數a的定義,那麼x的支配前沿中的任意節點z都需要一個a的φ函數。

支配前沿迭代:因為φ函數本身會產生一個定義,所以需要迴圈執行支配前沿策略,直到沒有節點需要額外增加φ函數。

定理:迭代支配前沿策略和迭代路徑覆蓋策略生成同樣的φ函數集合。

7.2.8 支配前沿的計算

 

DF[n] = DFlocal[n] ∪ { DFup[c] | c ∈ children[n] }
Where:
DFlocal[n]: 不被n嚴格支配(SSA的1989年版本要求的是嚴格支配,但1991年版本優化成直接支配,前一篇在ACM會議上,後一篇在ACM期刊上,Cytron果然是混職級的高手(smile))的n的後繼節點
DFup[c]: c的支配前沿集合中被n嚴格支配的節點
children[n]: 支配樹中n的子結點集合

轉換成演算法之後的偽代碼如下:

 1 computeDF[n]:
 2 S = {}
 3 for each node y in succ[n]
 4     if idom(y) ≠ n
 5         S = S ∪ {y}
 6 for each child c of n in the dom-tree
 7     computeDF[c]
 8     for each w ∈ DF[c]
 9         if n does not dom w, or n = w
10             S = S ∪ {w}
11 DF[n] = S

 

7.2.9 插入φ函數

插入的演算法描述如下:

 1 place-phi-functions:
 2   for each node n:
 3     for each variable a ∈ Aorig[n]:
 4       defsites[a] = defsites[a] ∪ [n]
 5   for each variable a:
 6     W = defsites[a]
 7     while W ≠ empty list
 8       remove some node n from W
 9       for each y in DF[n]:
10       if a ∉ Aphi[y]
11         insert-phi(y, a)
12         Aphi[y] = Aphi[y] ∪ {a}
13         if a ∉ Aorig[y]
14         W = W ∪ {y}
15  
16 insert-phi(y, a):
17   insert the statement a = ϕ(a, a, …, a)
18   at the top of block y, where the
19   phi-function has as many arguments
20   as y has predecessors
21 Where: 
22 Aorig[n]:  the  set  of  variables  defined  at  node  "n" 
23 Aphi[y]:  the  set  of  variables  that  have  phi-functions  at  node  "y"

 

7.2.10 變數重命名

 1 rename(n):
 2   rename-basic-block(n)
 3   for each successor Y of n, where n is the j-th predecessor of Y:
 4     for each phi-function f in Y, where the operand of f is ‘a’
 5       i = top(Stack[a])
 6       replace j-th operand with ai
 7   for each child X of n:
 8     rename(X)
 9   for each instruction S ∈ n:
10     for each variable v that S defines:
11       pop Stack[v]
rename-basic-block的定義參照之前的,這裡只是增加了一些場景。

7.3 跑一下整個流程

7.3.1 偽代碼

 1 i = 1
 2 j = 1
 3 k = 0
 4 while k < 100
 5   if j < 20
 6     j = i
 7     k = k + 1
 8   else
 9     j = k
10     k = k + 2
11 return j

 

 

7.3.2 生成控制流圖

 

 

7.3.3 根據控制流圖生成支配樹

 

 

7.3.4 計算支配前沿

一般從支配樹的葉子節點開始計算,第一輪計算所有葉子節點:

DF(7) = {9}, DF(9) = {3}, DF(5) = {9}, DF(10) = {}

第二輪去掉支配樹的所有葉子節點,計算第二輪葉子節點的支配前沿:

DF(4) = {3}

第三輪刪掉葉子節點,並計算當前葉子節點的支配前沿:

DF(3) = {3}

第四輪刪掉葉子節點,並計算當前葉子節點的支配前沿:

DF(0) = {}

7.3.5 插入φ函數

上一節求出來的DF集合其實只有2個元素,所以只需要在L3和L9的基本塊開始處插入φ函數,存在多種定義的變數只有j和k,所以下麵在L3和L9插入j和k的φ函數:

 

 

7.3.6 φ函數的參數個數

是否存在只有一個前驅的φ函數?如果只有一個前驅,那說明變數只有一個定義,自然就不需要φ函數。

是否存在參數多餘2個的φ函數?如果前驅個數大於2,自然就會出現參數多餘2的φ函數。

7.3.7 變數重命名

 

 

 

7.3.8 優化SSA範式

上面生成的SSA範式,從SSA的定義上看雖然已經是最簡的了,但可能存在一些用不上的變數定義,砍掉這些冗餘的定義是生命周期檢查的工作,經過生命周期檢查,僅在變數i還處在生命周期範圍內的程式點才需要插入i的φ函數。

下麵L1處的i的定義後面沒機會使用了,所以L1處的φ函數插入是不必要的:

 

 

7.4 使用SSA簡化分析

SSA範式可以用來簡化各種基於數據流的分析。SSA範式之前,數據流分析的某個變數的定義是一個集合,SSA範式轉換之後這些變數都變成了唯一定義;而且由於每個變數只有一次定義,相當於說每個變數都可以轉換成常量(迴圈內定義的變數除外,每次迴圈迭代,變數都會被重新定義)。

7.4.1 簡化冗餘代碼刪除

如果一個變數定義了,沒有使用,並且該定義的語句也沒有其他副作用,可以將該變數定義的語句刪除。(SSA之前變數是否被使用的含義就要複雜多了,因為會有多個版本的變數定義)

給每個SSA轉換之後的每個變數保存一個計數器,初始化為0。遍歷一遍代碼,每次使用就將計數器加一,遍歷完如果某個變數的使用計數器為0,則可以刪除變數的定義語句。

7.4.2 簡化常量傳播

因為每個變數的定義都只有一個定義,所以在變數定義時就能判斷變數是常量,還是真的變數。如果變數的定義依賴某個外部輸入,則它不是常量。如果變數的定義依賴的是一個常量,或者依賴的變數是一個常量,則常量可以一直傳播下去,所有類似的變數都能轉換成常量。直到明確所有變數都是依賴某個外部輸入。

如果碰到φ函數怎麼辦?因為φ函數會給變數的賦值增加多種可能性,所以變數的定義變成了一個集合,只有當集合中所有定義都是常量的情況下,才能將該變數轉換成常量。

下麵是llvm的常量傳播的實現:

 

 

7.4.3 SSA範式轉換之後的生命周期分析

新的生命周期分析演算法如下:

 1 For each statement S in the program:
 2   IN[S] = OUT[S] = {}
 3 For each variable v in the program:
 4   For each statement S that uses v:
 5     live(S, v)
 6 live(S, v):
 7   IN[S] = IN[S] ∪ {v}
 8   For each P in pred(S):
 9     OUT[P] = OUT[P] ∪ {v}
10     if P does not define v
11       live(P, v)

 

7.5 SSA簡史

  1. “An Efficient Method of Computing Static Single Assignment Form, ” appeared in the conference Record of the 16th ACM Symposium on principles of Programming Languages (Jan. 1989). https://c9x.me/compile/bib/ssa.pdf 
  2. Efficiently Computing Static Single Assignment Form and the Control Dependence Graph, ACM Transact~ons on Programmmg Languages and Systems, VO1 13, NO 4, October, le91, Pages 451.490. Efficiently computing static single assignment form and the control dependence graph (utexas.edu)
  3. Lengauer, T. and Tarjan, R. "A Fast Algorithm for Finding Dominators in a Flowgraph", TOPLAS, 1:1 (1979) pp 121-141
  4. Briggs, P. and Cooper, K. and Harvey, J. and Simpson, L. "Practical Improvements to the Construction and Destruction of Static Single Assignment Form", SP&E (28:8), (1998) pp 859-881

 


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 目錄 一、前景回顧 二、規劃頁表 三、實現頁表 四、運行測試 一、前景回顧 前面我們已經介紹了分頁機制的運行原理,那麼如何開啟分頁機制呢,也簡單,分為如下三個步驟: 1、創建頁目錄表並初始化頁記憶體。 2、將頁目錄表地址賦值為CR3。 3、打開CR0寄存器的PG位。 可以看出頁表是分頁機制的核心,接下 ...
  • 一、CDN是什麼? CDN的全稱是Content Delivery Network,即內容分髮網絡。其目的是通過在現有的Internet中增加一層新的CACHE(緩存)層,將網站的內容發佈到最接近用戶的網路”邊緣“的節點,使用戶可以就近取得所需的內容(就近原則),提高用戶訪問網站的響應速度。從技術上 ...
  • 分享嘉賓:葉聰 騰訊 技術專家 編輯整理:張智躍 內容來源:DataFun AI Talk「智能技術前沿實踐分享」 出品社區:DataFun 導讀: 本次分享系統介紹電腦視覺的基礎知識,如何利用這些識別演算法實現一個應用,同時進行部署、推廣這一整套流程。主要包括以下六個部分: 1、朋友圈爆款活動背後 ...
  • 6月15日,由中國信通院主辦的以 “原生聚力,雲數賦能”為主題的“2022雲原生產業大會”在北京舉行。憑藉創新技術和領先實踐,騰訊云云巢榮獲“雲原生技術創新案例”獎。 騰訊云云巢是騰訊雲自主研發的一站式雲原生有狀態服務平臺,基於Kubernetes容器化架構,為各類有狀態服務提供統一的集群管理、資源 ...
  • 一、開發背景 產品出設計稿要求做一個仿原生app簡訊驗證碼組件,花了兩小時搞出來一個還可以的組件,支持屏幕自適應,可以用於彈出框,或自己封裝的vue組件里,希望可以幫助那些被產品壓榨的同學,哈哈。😄 其核心思想就是利用一個輸入框使用css3,translate屬性,每輸入一次後向右位移一個單位位置 ...
  • 認識WEB **「網頁」**主要是由文字、圖像和超鏈接等元素構成,當然除了這些元素,網頁中還可以包括音頻、視頻以及Flash等。 **「瀏覽器」**是網頁顯示、運行的平臺。 「瀏覽器內核」(排版引擎、解釋引擎、渲染引擎) 常見的瀏覽器及其內核 瀏覽器 內核 備註 IE Trident IE、獵豹安全 ...
  • HTML各知識點總結: 基本標簽 標題標簽、段落標簽、換行標簽、水平線標簽、字體樣式標簽、註釋和特殊符號 網頁插入 圖像、超鏈接,視頻、音頻、列表、表格、表單、內聯框架等 超鏈接 錨鏈接、功能性鏈接 列表 有序列表、無序列表、自定義列表 表格 行、列、跨行、跨列 表單 提交格式、文本框、密碼框、單選 ...
  • 昨天太晚就沒來得及更新,今天是spu管理界面,這個界面一共有三個界面需要切換,完成了兩個界面,而且今天的難度在於最後兩個章節,富有一定的邏輯性,當然中間也有很多需要註意的,比如ElementUI的照片牆需要添加list屬性而且值為你的數據並且必須是一個數組必須有name、url屬性 一.spu管理 ...
一周排行
    -Advertisement-
    Play Games
  • 用例演示 - 創建實體 本節將演示一些示例用例並討論可選場景。 創建實體 從實體/聚合根類創建對象是實體生命周期的第一步。聚合/聚合根規則和最佳實踐部分 建議為Entity類創建一個主構造函數,以保證創建一個有效的實體。因此,無論何時我們需要創建實體的實例,我們都應該使用那個構造函數 參見下麵的問題 ...
  • 領域邏輯 & 應用邏輯 如前所述,領域驅動設計中的業務邏輯分為兩部分(層):領域邏輯和應用邏輯: 領域邏輯由系統的核心領域規則組成,應用邏輯實現應用特定的用例 雖然定義很明確,但實現起來可能並不容易。您可能無法決定哪些代碼應該位於應用程式層,哪些代碼應該位於領域層。本節試圖解釋其中的差異 多個應用程 ...
  • 表弟大學快畢業了,學了一個學期Python居然還不會寫學生管理系統,真的給我丟臉啊,教他又不肯學,還讓我直接給他寫,我真想兩巴掌上去,最終還是寫了給他,誰讓他是我表弟呢,關鍵時候還是得幫他一把! 寫完了放在那也是放著,所以今天分享給大家吧! 話不多說,咱們直接開始吧! 代碼解析 一、登錄頁面 1、定 ...
  • Zookeeper3.7源碼剖析 能力目標 掌握Zookeeper中Session的管理機制 能基於Client進行Debug測試Session創建/刷新操作 能搭建Zookeeper集群源碼配置 掌握集群環境下Leader選舉啟動過程 能說出Zookeeper選舉過程中的概念 能說出Zookeep ...
  • 前言 今天給大家分享一下我自己寫的筆記,純純的都是乾貨,關於字好像也能看。這是我學python整理出來的一些資料,希望對大家 有用。想要更多的資料那就的給一個關註了… python學習交流Q群:903971231### #導入Counter from collections import Count ...
  • Hi,大家好,我是Mic 一個工作5年的粉絲找到我。 他說: “Mic老師,你要是能回答出這個問題,我就佩服你” 我當場就懵了,現在打賭都這麼隨意了嗎? 我問他問題是什麼,他說“Kafka如何避免重覆消費的問題!” 下麵看看普通人和高手的回答! 普通人: Kafka怎麼避免重覆消費就是我們可以通過 ...
  • 前言 Steam是由美國電子游戲商Valve於2003年9月12日推出的數字發行平臺,被認為是電腦游戲界最大的數位發行平臺之一,Steam平臺是全球最大的綜合性數字發行平臺之一。玩家可以在該平臺購買、下載、討論、上傳和分享游戲和軟體。 而每周的steam會開啟了一輪特惠,可以讓游戲打折,而玩家就會 ...
  • 本篇內容將在上一篇已有的內容基礎上,進一步的聊一下項目中使用JPA的一些高階複雜場景的實踐指導,覆蓋了主要核心的JPA使用場景,可以讓你在需求開發的時候對JPA的使用更加的游刃有餘。 ...
  • 1.路徑處理 1.找模塊:sys.path import sys print(sys.path) - 1.理解 - 1.是python去查找包或模塊 - 2.項目開始根目錄,python內置的目錄 - 3.雖然說python的安裝目錄下也可以存放我們寫的模塊,但是不建議(太多了,不大好找) - 4. ...
  • Go 語言入門練手項目系列 01 基於命令行的圖書的增刪查改 02 文件管理 持續更新中... > 本文來自博客園,作者:Arway,轉載請註明原文鏈接:https://www.cnblogs.com/cenjw/p/gobeginner-proj-bookstore-cli.html 介紹 這是一 ...