痞子衡嵌入式:淺談i.MXRT1xxx系列MCU時鐘相關功能引腳的作用

来源:https://www.cnblogs.com/henjay724/archive/2022/05/08/16246130.html
-Advertisement-
Play Games

大家好,我是痞子衡,是正經搞技術的痞子。今天痞子衡給大家介紹的是i.MXRT1xxx系列MCU時鐘相關功能引腳作用。 如果我們從一顆 MCU 晶元的引腳分類來看晶元功能,大概可以分為三大類:電源、時鐘、外設功能。作為嵌入式開發者,大部分時候關註得都是外設功能引腳,而對於時鐘相關引腳往往不太在意,其實 ...



  大家好,我是痞子衡,是正經搞技術的痞子。今天痞子衡給大家介紹的是i.MXRT1xxx系列MCU時鐘相關功能引腳作用

  如果我們從一顆 MCU 晶元的引腳分類來看晶元功能,大概可以分為三大類:電源、時鐘、外設功能。作為嵌入式開發者,大部分時候關註得都是外設功能引腳,而對於時鐘相關引腳往往不太在意,其實有些時候利用時鐘功能引腳也能助你定位問題。今天痞子衡就帶你梳理一下 i.MXRT1xxx 系列的時鐘系統以及相關功能引腳:

一、時鐘系統簡介

  目前 i.MXRT1xxx 系列主要分為 i.MXRT10xx 和 i.MXRT11xx 兩大分支。這兩個分支的時鐘系統設計是有一些差異的,不過總體來說,架構差別不大,我們以如下 i.MXRT1170 的時鐘架構為例來具體介紹。

  在時鐘系統架構圖裡我們能看到有五大組件:OSC_PLL、CCM、LPCG、GPC、SRC,其中最核心的功能在前兩個,OSC_PLL 主要負責產生時鐘,CCM 主要用於分配時鐘。

二、關於時鐘源頭

  上一節里我們知道 OSC_PLL 模塊負責所有時鐘的生成,但那些時鐘並不是憑空產生的,也是需要源頭的。這個源頭既可以來自晶元內部,也可以來自外部引腳輸入。

  先說晶元內部的 RC OSC,在晶元設計時,為了保證在沒有外部時鐘/晶振輸入的情況下,晶元也能工作,所以內部集成了一些振蕩器/振蕩電路(RC Oscillator),32KHz 和 24MHz(48MHz) 是標配,部分型號上還有 16MHz、400MHz,不過這些內部振蕩器精度有限(有可能誤差20%),適用晶元低速運行場合。

  如果是晶元高速運行的場合(或者對精度要求高的場合),那一定需要外接高精度振蕩器,包含從 XTALI/XTALO 引腳進來的 24MHz OSC,以及從 RTC_XTALI/RTC_XTALO 引腳進來的 32.768KHz OSC,這兩個外部時鐘源是由 OSC_PLL 大模塊內部的 XTALOSC 小模塊負責管理的,XTALOSC 模塊優先檢測外部是否有 32.768KHz / 24MHz OSC 存在,如果存在則用外部源,如果不存在則啟用內部 32KHz / 24MHz RC OSC 源。

  24MHz OSC(內部或者外部源)是 OSC_PLL 內部 PLL 的主要時鐘源,有了基準的 24MHz 時鐘,PLL 就能將其倍頻得到想要的高頻時鐘,晶元內部 PLL 有很多個,大部分 PLL 都只是輸出固定原始頻率時鐘,少部分含 PFD 功能的 PLL(一般是 System PLL)可以調節原始頻率輸出。除了 24MHz OSC 外,PLL 也可以接受來自 CLK1_P/CLK1_N 引腳輸入的源。

1. 對於 i.MXRT10xx 系列,PLL 時鐘源選擇在 CCM_ANALOG->PLL_xxx[BYPASS_CLK_SRC] 位
2. 對於 i.MXRT11xx 系列,PLL 時鐘源由 Set Point 設置
時鐘源輸入 i.MXRT1011 i.MXRT1015/102x i.MXRT105x/106x i.MXRT11xx
(116x/117x/118x)
i.MXRT118x
XTALI
XTALO
LQFP80 - 37,38 LQFP100 - 46,47
LQFP144 - 67,68
BGA196 - N11,P11 BGA289 - U16,T16 BGA144 - M9,L9
RTC_XTALI
RTC_XTALO
LQFP80 - 27,28 LQFP100 - 36,37
LQFP144 - 57,58
BGA196 - N9,P9 BGA289 - T13,U13 BGA144 - M7,L7
CLK1_P
CLK1_N
N/A N/A BGA196 - N13,P13 BGA289 - U15,T15 BGA144 - M11,L11

三、關於時鐘輸出

  前面講了 32KHz / 24MHz OSC 是比較重要的時鐘源頭,它的精度對系統性能有很大影響,因此我們需要有一種方法實測這兩個時鐘的精度,晶元設計時特意在一些 I/O 引腳復用功能里做了 REF_CLK_24M / REF_CLK_32K 選項,當 I/O 配置為該功能時,便可用示波器量得具體時鐘頻率。

  我們知道 CCM 模塊負責 OSC_PLL 輸出的時鐘資源的分配,晶元里所有外設的具體時鐘源指定以及分頻繫數、開關控制均由 CCM 來完成。如果你想觀測某 PLL 最終輸出或者常用外設時鐘源最終配置,也可以通過指定 I/O 輸出觀測,即下麵的 CCM_CLKO1 / CCM_CLKO2 復用功能選項。當然 CCM_CLKOx 不僅僅用於觀測頻率,也可以用於給外部晶元提供時鐘源。

1. 對於 i.MXRT10xx 系列,CCM_CLKOx 時鐘輸出控制在 CCM->CCOSR 寄存器
2. 對於 i.MXRT11xx 系列,CCM_CLKOx 時鐘輸出控制在最後兩個 CCM->CLOCK_ROOT_CONTROL 寄存器
時鐘信號輸出 i.MXRT1011 i.MXRT1015/102x i.MXRT105x/106x i.MXRT116x/117x i.MXRT118x
REF_CLK_24M GPIO_AD_14 GPIO_AD_B0_01
GPIO_AD_B0_03
GPIO_AD_B0_13
GPIO_AD_14 N/A
REF_CLK_32K GPIO_AD_07 GPIO_AD_B0_00 GPIO_AD_13 N/A
CCM_CLKO1 GPIO_SD_02 GPIO_SD_B1_02 GPIO_SD_B0_04 GPIO_EMC_B1_40 GPIO_EMC_B2_02
GPIO_SD_B1_00
CCM_CLKO2 GPIO_SD_01 GPIO_SD_B1_03 GPIO_SD_B0_05 GPIO_EMC_B1_41 GPIO_EMC_B2_08
GPIO_SD_B1_01

  總結一下,時鐘功能引腳尤其是輸出引腳對於確認時鐘頻率具有重要意義,如果你的應用嚴重依賴時鐘精度,遇到問題時不妨先檢查一下時鐘頻率的準確性以及精度。

  至此,i.MXRT1xxx系列MCU時鐘相關功能引腳作用痞子衡便介紹完畢了,掌聲在哪裡~~~

歡迎訂閱

文章會同時發佈到我的 博客園主頁CSDN主頁知乎主頁微信公眾號 平臺上。

微信搜索"痞子衡嵌入式"或者掃描下麵二維碼,就可以在手機上第一時間看了哦。

  最後歡迎關註痞子衡個人微信公眾號【痞子衡嵌入式】,一個專註嵌入式技術的公眾號,跟著痞子衡一起玩轉嵌入式。

痞子衡嵌入式-微信二維碼 痞子衡嵌入式-微信收款二維碼 痞子衡嵌入式-支付寶收款二維碼

  衡傑(痞子衡),目前就職於恩智浦MCU系統部門,擔任嵌入式系統應用工程師。

  專欄內所有文章的轉載請註明出處:http://www.cnblogs.com/henjay724/

  與痞子衡進一步交流或咨詢業務合作請發郵件至 [email protected]

  可以關註痞子衡的Github主頁 https://github.com/JayHeng,有很多好玩的嵌入式項目。

  關於專欄文章有任何疑問請直接在博客下麵留言,痞子衡會及時回覆免費(劃重點)答疑。

  痞子衡郵箱已被私信擠爆,技術問題不推薦私信,堅持私信請先掃碼付款(5元起步)再發。



您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 原創:微信公眾號 【阿Q說代碼】,歡迎分享,轉載請保留出處。 之前寫過一篇名為《看了同事寫的代碼,我竟然開始默默的模仿了。。。》的文章,今天偶然間看了下後臺數據,大吃一驚。該文章的閱讀量在微信公眾號內竟然達到了驚人的5W+ 。對於沒見過市面的我來說已經相當滿足了。 當然,能達到這樣的數據離不開各位大 ...
  • 近幾年網路發展的越來越好,其中的功勞離不開默默付出的程式員,正是他們任勞任怨的付出,才換來現在的便捷,在程式員匯聚的論壇,一名程式員卻道出另一種現象:好久沒打代碼了,回想以前辭職到老家礦洞里秘密開發的日子,二年整整敲了45萬行代碼。 這便是該程式員的原文,在貼文最下方,還曬出山洞的全景樣貌,山洞看起 ...
  • 回顧總結 到目前為止,Spring源碼中AbstractApplicationContext#refresh方法的已經解讀到第11個方法finishBeanFactoryInitialization,前10個方法介紹了: BeanFactory的準備,創建,刷新,個性化BeanFactory的擴展點 ...
  • package com.oop.demo06;public class Person { public void run(){ System.out.println("run"); }} package com.oop.demo06;public class Student extends Pers ...
  • 1、前言 好久沒有更新博客了,最近沒什麼假期,但是卻比以前還忙!工作、工作、工作,就像趕集似的,聚在一起。這個上海啥時候才能解封困在這裡暗無天日的。早點解封出去看看想見的人的人,做做該做的事。工作中有那麼一個需求客戶想要通過自己選擇列表的checkbox然後下載所選列表裡面的圖片,圖片我們是存在圖片 ...
  • 一 什麼是轉換 轉換是接受一個類型的值並使用它作為另一個類型的等價值的過程。 下列代碼演示了將1個short類型的值強制轉換成byte類型的值。 short var1 = 5; byte var2 = 10; var2 = (byte) var1; //強制轉換,將var1的值轉換成byte類型 二 ...
  • VS2019如何把項目部署和發佈 這裡演示:通過IIS文件publish的方式部署到Windows本地伺服器上 第一步(安裝IIS) 1.在自己電腦上搜索Windows功能里的【啟用或關閉Windows功能】 2.配置Internet Information Services 3.然後點擊確認就OK ...
  • 1、回調函數 關於回調函數,在之前的文章《回調函數》已經詳解講解過了,這個文章不再講解,不太懂的同學請看之前的文章《回調函數》。在之前講解回調函數中就使用串口作為示例,使用回調函數可以方便封裝通訊庫,晶元/模塊廠家的SDK和部分開源庫經常這樣做,這樣可以實現模塊間的解耦,模塊化編程。 這篇文章主要講 ...
一周排行
    -Advertisement-
    Play Games
  • 前言 在我們開發過程中基本上不可或缺的用到一些敏感機密數據,比如SQL伺服器的連接串或者是OAuth2的Secret等,這些敏感數據在代碼中是不太安全的,我們不應該在源代碼中存儲密碼和其他的敏感數據,一種推薦的方式是通過Asp.Net Core的機密管理器。 機密管理器 在 ASP.NET Core ...
  • 新改進提供的Taurus Rpc 功能,可以簡化微服務間的調用,同時可以不用再手動輸出模塊名稱,或調用路徑,包括負載均衡,這一切,由框架實現並提供了。新的Taurus Rpc 功能,將使得服務間的調用,更加輕鬆、簡約、高效。 ...
  • 順序棧的介面程式 目錄順序棧的介面程式頭文件創建順序棧入棧出棧利用棧將10進位轉16進位數驗證 頭文件 #include <stdio.h> #include <stdbool.h> #include <stdlib.h> 創建順序棧 // 指的是順序棧中的元素的數據類型,用戶可以根據需要進行修改 ...
  • 前言 整理這個官方翻譯的系列,原因是網上大部分的 tomcat 版本比較舊,此版本為 v11 最新的版本。 開源項目 從零手寫實現 tomcat minicat 別稱【嗅虎】心有猛虎,輕嗅薔薇。 系列文章 web server apache tomcat11-01-官方文檔入門介紹 web serv ...
  • C總結與剖析:關鍵字篇 -- <<C語言深度解剖>> 目錄C總結與剖析:關鍵字篇 -- <<C語言深度解剖>>程式的本質:二進位文件變數1.變數:記憶體上的某個位置開闢的空間2.變數的初始化3.為什麼要有變數4.局部變數與全局變數5.變數的大小由類型決定6.任何一個變數,記憶體賦值都是從低地址開始往高地 ...
  • 如果讓你來做一個有狀態流式應用的故障恢復,你會如何來做呢? 單機和多機會遇到什麼不同的問題? Flink Checkpoint 是做什麼用的?原理是什麼? ...
  • C++ 多級繼承 多級繼承是一種面向對象編程(OOP)特性,允許一個類從多個基類繼承屬性和方法。它使代碼更易於組織和維護,並促進代碼重用。 多級繼承的語法 在 C++ 中,使用 : 符號來指定繼承關係。多級繼承的語法如下: class DerivedClass : public BaseClass1 ...
  • 前言 什麼是SpringCloud? Spring Cloud 是一系列框架的有序集合,它利用 Spring Boot 的開發便利性簡化了分散式系統的開發,比如服務註冊、服務發現、網關、路由、鏈路追蹤等。Spring Cloud 並不是重覆造輪子,而是將市面上開發得比較好的模塊集成進去,進行封裝,從 ...
  • class_template 類模板和函數模板的定義和使用類似,我們已經進行了介紹。有時,有兩個或多個類,其功能是相同的,僅僅是數據類型不同。類模板用於實現類所需數據的類型參數化 template<class NameType, class AgeType> class Person { publi ...
  • 目錄system v IPC簡介共用記憶體需要用到的函數介面shmget函數--獲取對象IDshmat函數--獲得映射空間shmctl函數--釋放資源共用記憶體實現思路註意 system v IPC簡介 消息隊列、共用記憶體和信號量統稱為system v IPC(進程間通信機制),V是羅馬數字5,是UNI ...