Quantexa 服務特色是場景決策智能CDI(contextual decision intelligence) 主要落地場景是金融以及涉及交易的各類機構的反洗錢反金融詐騙, 客戶畫像, 風控 解決的問題是監管合規, 降低誤判率, 提高準確率, 降成本, 提高行業競爭力 面向的主要客戶是銀行, 保... ...
Quantexa
大數據服務提供商, 使用實體解析, 關係分析和人工智慧技術幫助客戶進行數據處理和預防金融犯罪.
企業概覽
- 2016年成立, 當前規模500人
- 服務特色是場景決策智能CDI(contextual decision intelligence)
- 落地場景主要是金融機構的反洗錢反金融詐騙監控, 數據管理, 風控
- 解決的問題: 監管合規, 提高警告準確率, 降低成本, 提高行業競爭力
- 面向的主要客戶是銀行, 保險, 支付機構, 運營商(CSP)和政府機構, 已知客戶有匯豐銀行, 渣打銀行, 丹斯克銀行(丹麥), 紐約&梅隆銀行, OFX(澳洲支付機構)
時間軸
2016
- 2016-03
- Founded, 15 people(6 financial crime experts). Work for anti financial crimes for HSBC, services: AML, people traffic, solve the data problems
- 2016-09
- SWIFT Innotribe Chanllenge Winner
2017
- 2017-03 3.3m in Series A investment
- 2017-10 Microsoft Accelerator Programme Winner
- 2017-? Synechron became a customer
2018
- 2018-04 Featured in Financial Times
- 2018-04 Named in Tech Nation Future 50
- 2018-04 HSBC became a customer
- 2018-07 Open US office in NY and Boston
- 2018-08 30m in Series B investment
- 2018-09 100 employees
- 2018-? Danske Bank a successful pilot
2019
- 2019-02 Featured in The Times
- 2019-02 Host QuanCon
- 2019-03 Appeared on CNN(TV)
- 2019-05 Named "Cool Vendor" by Gartner
- 2019-07 Appeared on Sky(TV)
- 2019-09 200 employees
2020
- 2020-07 64.7m in Series C funding. The round was led by Evolution Equity Partners,
- 2020-09 Engagement with BNY Mellon
2021
- 2021-07 153m in Series D funding from Warburg Pincus and a growing group of blue-chip investors
- 2021-09 BNY Mellon has completed a strategic investment in Quantexa.
- 2021-10 Quantexa 2 release - easier deployment, simplify navigation, introducing contextual search for unstructured data
2022
- 2022-04 Quantexa 2.1 release, introducing Geospatial Search
# 服務和解決方案
Quantexa使客戶能夠從數據中做出更好的決策, 根據其網站介紹, 分為監控和調查兩個方向, 可能是同一個產品的兩個不同側重的說明.
場景監控 contextual monitoring
結合內部數據和外部數據構建關係網路,降低誤報, 提高速度和準確率, 並識別之前未發現的風險
- Enhance detection rates with advanced models that leverage network-based context to reduce false positives and generate more accurate alerts.
- Generate more meaningful alerts with context for investigators, leading to faster, trusted decisions.
- Find new, previously unknown risk from external sources to optimize future alert generation.
調查 investigations
藉助可視化功能快速響應警報和信息請求, 對每個客戶和交易對手創建單獨畫像以及實時的關聯和行為圖譜, 更快識別金融犯罪和欺詐風險.
- Automate manual work, and free up experts to focus on real risk.
- Create a true single view of each customer or counterparty, and a real-time network of relevant connections and behaviors.
- Go deeper and wider in your data to identify financial crime and fraud risks and typologies, faster.
涉及的服務明細
反洗錢 KYC & AML
KYC和AML是大部分國家都存在的金融業監管要求
- 交易監控 Transaction Monitoring, 對異常的賬戶交易發出預警
- 重點監控名單 Watch List
- 身份校驗 Identity Verification, 保管客戶的身份以及機構信息,確保實際受益人信息的準確性以及有效性
- 案例管理 Case Management
- 行為分析 Behavioral Analytics
- 風險評估 Risk Assessment, 交易是否涉及敏感國家或地區
- 客戶是否包括擔任重要公職的人員 PEP Screening, 受製裁或涉及任何負面新聞/媒體信息
- 可疑行為報告 SARs (suspicious activity report)
- 調查管理 Investigation Management
- 合規報告 Compliance Reporting
欺詐檢測 Fraud Detection
- 自定義欺詐參數 Custom Fraud Parameters
- 模式識別, 銀行業/保險業 Pattern Recognition: for Banking, for Insurance Industry
- 調查記錄 Investigator Notes
- 支票欺詐監控 Check Fraud Monitoring
- 內部欺詐監控 Internal Fraud Monitoring
- 許可權安全管理 Access Security Management
- 針對電商和數字貨幣的交易審核 Transaction Approval: for eCommerce, for Crypto
數據管理 Master Data Management
- 關係映射 Relationship Mapping
- 數據屏蔽 Data Masking
- 流程管理 Process Management
- 可視化 Visualization
- 匹配和合併 Match & Merge
- 層級管理 Hierarchy Management
- 數據源集成 Data Source Integrations
- 多領域/多模型 Multi-Domain
- 數據治理 Data Governance
- 元數據管理 Metadata Management
產品介紹
以上服務和解決方案的載體為 Quantexa Syneo 平臺. 當前(2022.04)最新版本為2.1
產品明細
Quantexa利用大數據和人工智慧技術,發現潛在的客戶聯繫和行為,以解決金融犯罪、客戶洞察和數據分析方面的需求
快速數據導入 Rapid data ingestion
-
可擴展, 高性能的數據訂閱(導入), 不需要複雜的ETL; 對現有的數據和結構進行自動判斷, 配置, 清洗, 解析和標準化; 開箱即用, 帶預設的實體定義和屬性設置, 帶預先訓練好的模型
-
可以接受結構化, 非結構化和半結構化的輸入數據; 導入時驗證數據欄位, 識別問題; 提供UI使用戶能夠進行操作並解決問題
-
Quantexa 為其客戶提供了許多分析模型, 目前可用的模型包括資本市場反洗錢(包括外匯、股票和貴金屬), 融情報機構評分, 減少誤報, 貿易反洗錢, 客戶畫像評分, 證券反洗錢檢測, 貿易融資欺詐, 信用卡申請欺詐等
-
Quantexa 還提供定製建模和技能培訓服務.
-
Use Quantexa Fusion to model complex source data and ingest it fast with no-code, scalable, high performance data preparation and ingestion – and no complex ETL.
-
Automatically infer, configure, cleanse, parse and standardize potential linking attributes from existing data schema.
-
Get started quickly with out of the box, state-of-the-art AI-tuned models. Define entities and their attributes.
實體解析 Entity Resolution
-
Quantexa的實體解析功連接內部和外部數據得到更好的準確率, 甚至對於沒有唯一關鍵詞的數據也能得到較好效果; 定義和創建人, 業務, 地址等各種數據資產並輸出給批量和流水線處理
-
最終用戶可以深入到一個實體中,查看不同的數據記錄如何以及為什麼被匹配到同一個實體中. 用戶可以動態調整解析匹配邏輯.
-
Connect internal and external data sources with unprecedented accuracy, even from poor quality data without unique match keys.
-
Create data assets for people, businesses, addresses and more, and expose them through batch and real-time data pipelines.
關係圖譜 Network Generation
使用圖展示實體之間的真實關聯, 這些關聯包括供應鏈, 合作伙伴, 法律層級, 社會關係等; 基於動態實體解析為不同的場景, 並生成不同的關聯; 挖掘用戶, 機構, 地址和交易之間的關聯
- Use to generate graphs that link entities into relevant, real world networks representing supply chains, associates, legal hierarchies, social connections and more.
- Build on dynamic entity resolution to generate different networks for different use cases.
- Reveal the context of how people, organizations, places, and transactions relate to each other.
關聯(場景)分析 Contextual analytics
-
使用Quantexa Assess(可能是Syneo內部的一個數據資產管理模塊, 外部並無單獨介紹)創建和維護數據關係模型; 為機器學習和AI服務的實體圖譜分析工具.
-
客戶能夠導入外部檢測模型或使用他們自己喜歡的分析環境, 如KNIME, R或Python. 建模方法促進了透明性和可解釋性,並且可以批量或實時運行.
-
Use Quantexa Assess to empower data scientists to build and maintain their own contextual models with ease.
-
Productively engineer features for machine learning and AI with native support for entity graphs and networks to build robust features for machine learning and AI.
Quantexa支持的機器學習演算法和適用場景
可視化和探查 Visualization and exploration
-
調查人員可以搜索平臺獲取的各種客戶和交易數據
-
界面支持上千用戶同時操作, 進行快速和精確的合作決策. 界面支持可視化探索和分析, 創建標簽, 高亮感興趣的數據; 同時提供API給第三方系統如CRM等進行集成
-
數據隱私合規: Quantexa具有限制對客戶數據訪問的能力,以允許其客戶遵守當地的數據隱私要求。當調查人員與實體和圖譜交互時,他們只能根據用戶的許可權查看數據.
-
Support thousands of users with faster, more accurate, collaborative decisioning using Quantexa’s UI to search, visualize and explore context; investigate and thematically analyze; and review analytically created flags within their context, highlighting points of interest.
-
Or, use Quantexa’s APIs for external application platforms including CRM and case management.
工作流程
數據導入和管理
場景分析和調查
產品技術棧
語言
- Scala
Quantexa Syneo的主要開發語言 - Python
數據工作者常用語言, 用於機器學習以及數據處理 - R
數據工作者常用語言, 函數豐富, 常用於科學計算, 統計和數據分析, 作圖
存儲
- PostgreSQL
中小型關係數據存儲 - Oracle
大中型關係數據存儲, 商業軟體 - Hadoop/Hive
大型分散式存儲和處理, 用於時效性要求不高的計算任務, 猜測在這個產品中主要用於給Spark Streaming提供存儲 - Elastic
數據檢索引擎, 支持分散式集群 - Apache Spark, Spark Streaming
數據處理引擎, 支持容錯的高吞吐量實時流數據處理, 可以運行在Hadoop或Google Cloud, Kubernetes之上, 使用記憶體計算, 速度較快 - Apache Kafka
消息隊列, 流式數據管道, 用於在Spark前接收和暫存數據
容器
- Redhat Openshift (Kubernetes)
第三方服務
- Google Cloud Storage
- Google Cloud SQL
- AWS
- Azure
- Salesforce
界面展示
暫時只能搜索到圖譜分析部分的界面
這兩個是版本2.1中新增的地理位置分析功能
市場驅動
監管需求 Regulatory requirements
for financial firms’ ability to detect money laundering continue to mount. The price of failure is hefty fines (banks worldwide have paid several billion dollars in fines for AML lapses since 2010), embarrassing headlines, and potential liability for the firm’s chief AML officer in the form of personal fines and even jail time.
創新需求 Innovation
in financial services is creating an ever-growing attack surface. Faster payments and the increasing electronification of payment flows create utility for businesses, but criminals benefit from these innovations as well.
客戶期望 Customers’ expectations
for a smooth and easy experience put pressure on firms to reduce lag time and friction across the customer life cycle. These expectations start at the onboarding process and extend throughout the customer journey.
歷史遺留技術升級壓力 Legacy technology
that produces high volumes of alerts, false positives, and often false negatives compounds the challenges that banks face. Banks often have to throw bodies at the problem to keep up with alert volume. This is not only expensive but often problematic in terms of finding skilled analysts to fill these positions.
輿論壓力 Social pressure
from citizens who feel that banks, as trusted custodians, have an ethical obligation to detect and intercede in money laundering, human trafficking, and fraud incidents
市場趨勢 Trends
針對銀行的犯罪攻擊技術在不斷升級 Escalating criminal attacks on banks use advanced technology.
Organized crime rings, rogue nations, and terrorists are all leveraging automation and artificial intelligence in their attacks on the financial ecosystem. These sophisticated attacks, combined with the growing volume of electronic payments, make it ifficult for FIs to keep pace with the rising tide of alerts.
監管機構希望金融機構升級技術協助其更好提升情報能力 Regulators are encouraging FIs to use more sophisticated detection techniques.
Especially in the AML arena, concern over regulatory response to the use of advanced analytics has been an inhibitor to adoption. The new openness among regulators is encouraging FIs to invest in technology that can help them extract intelligence from their customer data.
銀行希望提高運營效率 Banks are looking for operational efficiencies.
While many FIs initially turned to outsourcing first- and secondlevel alert triage to less expensive offshore locations, the benefits of these strategies were short-lived, as alert volumes continue to multiply. Many banks are now focused on tackling the source of the issue—dirty source data and high levels of false-positive alerts.
新技術的採用給銀行等金融企業創造競爭優勢 Adoption of next-generation financial crime technology is creating competitive differentiation.
Firms that use advanced technologies to vet customers’ identities and transactions differentiate themselves from their competitors, as they provide more responsive and streamlined customer interactions, improve their operational efficiency, and meet regulatory requirements.
參考
- Official site https://www.quantexa.com/
- 2019-08-05 Jamie Hutton, chief technology officer at Quantexa, about building a culture of compliance within the banking industry.
https://www.youtube.com/watch?v=X5vaAGfytA8 - 2020-03-02 Ian Lees is the Head of Research and Development at Quantexa, he gave an introduction to Quantexa (our hosts) at the start of this months Scala in the City, Lightbend Edition
https://www.youtube.com/watch?v=f5A1R_JCvqA - 2020-07 Quantexa Raises $64.7M to Drive Growth in Big Data and Analytics Ecosystem
https://www.datanami.com/this-just-in/quantexa-raises-64-7m-to-drive-growth-in-big-data-and-analytics-ecosystem/ - 2021-03-09 Jennifer Calvery, Head of Financial Crime HSBC. How HSBC Uses Technology To Combat Crime. See how HSBC is using technology to manage its data effectively and improve financial crime detection to tackle horrific crimes, from terrorist financing and human trafficking.
https://www.youtube.com/watch?v=JmnI2K6OVNg - Follows a successful 12-month engagement with BNY Mellon using Quantexa's platform and includes an expanded relationship focused on data fabric innovation at the bank
https://www.prnewswire.com/news-releases/bny-mellon-invests-in-quantexa-technology-301388579.html - OFX with Quantexa: OFX is an Australian foreign exchange and payments company https://cloud.google.com/customers/ofx-quantexa
- Case of using Quantexa https://thefinancialcrimenews.com/why-illegal-trafficking-in-organs-is-growing-fastbut-few-are-talking-about-itby-steve-farrer/
- Dun & Bradstreet partner with Quantexa https://www.dnb.com/solutions/partner/quantexa-partners-detail.html
- Positive, PR service provider for Quantexa https://www.positivemarketing.com/case-studies/quantexa/