一,Flink快速上手

来源:https://www.cnblogs.com/arrorzz/archive/2022/03/22/16041622.html
-Advertisement-
Play Games

1.依賴配置 1.1 pom文件 <properties> <maven.compiler.source>8</maven.compiler.source> <maven.compiler.target>8</maven.compiler.target> <flink.version>1.13.0< ...



1.依赖配置

1.1 pom文件

<properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <flink.version>1.13.0</flink.version>
        <java.version>1.8</java.version>
    <!--需要设定scala版本因为flink也引用了scala的一些东西-->
        <scala.binary.version>2.12</scala.binary.version>
    
        <slf4j.version>1.7.30</slf4j.version>
    </properties>

    <dependencies>
        <!-- 引入 Flink 相关依赖-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- 引入日志管理相关依赖-->
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-api</artifactId>
            <version>${slf4j.version}</version>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>${slf4j.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-to-slf4j</artifactId>
            <version>2.14.0</version>
        </dependency>
    </dependencies>

1.2 日志文件

log4j.rootLogger=error, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n

2.编写代码

2.1 在根目录下创建数据

image-20220322205544286

2.2 书写批处理执行代码

public static void main(String[] args) throws Exception {
    // 1. 创建执行环境
    ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
    // 2. 从文件读取数据 按行读取(存储的元素就是每行的文本)
    DataSource<String> lineDs = env.readTextFile("input/word.txt");
    // 3. 转换数据格式
    FlatMapOperator<String, Tuple2<String, Long>> wordAndOne =
        lineDs.flatMap((String line, Collector<Tuple2<String, Long>> out) ->
                       {
                           String[] words = line.split(" ");
                           for (String word : words) {
                               out.collect(Tuple2.of(word, 1L));
                           }
                       });
    // 4.防止泛型擦除
    FlatMapOperator<String, Tuple2<String, Long>> returns =
        wordAndOne.returns(Types.TUPLE(Types.STRING, Types.LONG));
    // 5. 按照 word 进行分组
    UnsortedGrouping<Tuple2<String, Long>> wordAndOneUg = wordAndOne.groupBy(0);
    // 6. 分组内聚合统计
    AggregateOperator<Tuple2<String, Long>> sum = wordAndOneUg.sum(1);
    // 7. 打印结果
    sum.print();
    // 结果
    // (flink,1)
    // (world,1)
    // (hello,3)
    // (java,1)
}

代码说明和注意事项:

① Flink 在执行应用程序前应该获取执行环境对象,也就是运行时上下文环境。

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

② Flink 同时提供了 Java 和 Scala 两种语言的 API,有些类在两套 API 中名称是一样的。所以在引入包时,如果有 Java 和 Scala 两种选择,要注意选用 Java 的包。

③ 直接调用执行环境的 readTextFile 方法,可以从文件中读取数据。

④ 我们的目标是将每个单词对应的个数统计出来,所以调用 flatmap 方法可以对一行文字进行分词转换。将文件中每一行文字拆分成单词后,要转换成(word,count)形式的二元组,初始 count 都为 1。returns 方法指定的返回数据类型 Tuple2,就是 Flink 自带的二元组数据类型。

⑤ 在分组时调用了 groupBy 方法,它不能使用分组选择器,只能采用位置索引或属性名称进行分组。

需要注意的是,这种代码的实现方式,是基于 DataSet API 的,也就是我们对数据的处理转换,是看作数据集来进行操作的。事实上 Flink 本身是流批统一的处理架构,批量的数据集本质上也是流,没有必要用两套不同的 API 来实现。所以从 Flink 1.12 开始,官方推荐的做法是直接使用 DataStream API,在提交任务时通过将执行模式设为 BATCH 来进行批处理:

$ bin/flink run -Dexecution.runtime-mode=BATCH BatchWordCount.jar

这样,DataSet API 就已经处于“软弃用”(soft deprecated)的状态,在实际应用中我们只要维护一套 DataStream API 就可以了。这里只是为了方便大家理解,我们依然用 DataSet API做了批处理的实现。

2.3 书写流处理执行代码(有界)

public static void main(String[] args) throws Exception {
    // 1. 创建执行环境
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    // 2. 读取文件
    DataStreamSource<String> lineDss = env.readTextFile("input/word.txt");
    // 3. 转换数据格式
    SingleOutputStreamOperator<Tuple2<String, Long>> wordAndOne =
        lineDss.flatMap((String line, Collector<String> out) ->
        {
            Arrays.stream(line.split(" ")).forEach(out::collect);
        }).returns(Types.STRING).map(word -> Tuple2.of(word, 1L)).returns(Types.TUPLE(Types.STRING, Types.LONG));
    // 4. 分组
    KeyedStream<Tuple2<String, Long>, String> wordAndOneKs = wordAndOne.keyBy(t -> t.f0);
    // 5. 求和
    SingleOutputStreamOperator<Tuple2<String, Long>> result = wordAndOneKs.sum(1);
    // 6. 打印
    result.print();
    // 7. 执行
    env.execute();
}

① 主要观察与批处理程序 BatchWordCount 的不同:

② 创建执行环境的不同,流处理程序使用的是 StreamExecutionEnvironment。

③ 每一步处理转换之后,得到的数据对象类型不同。

④ 分组操作调用的是 keyBy 方法,可以传入一个匿名函数作为键选择器(KeySelector),指定当前分组的 key 是什么。

⑤ 代码末尾需要调用 env 的 execute 方法,开始执行任务。

  • 输出结果
3> (java,1)
9> (world,1)
5> (hello,1)
5> (hello,2)
13> (flink,1)
5> (hello,3)

我们可以看到,这与批处理的结果是完全不同的。批处理针对每个单词,只会输出一个最终的统计个数;而在流处理的打印结果中,“hello”这个单词每出现一次,都会有一个频次统计数据输出。这就是流处理的特点,数据逐个处理,每来一条数据就会处理输出一次。我们通过打印结果,可以清晰地看到单词“hello”数量增长的过程。

看到这里大家可能又会有新的疑惑:我们读取文件,第一行应该是“hello flink”,怎么这里输出的第一个单词是“world”呢?每个输出的结果二元组,前面都有一个数字,这又是什么呢?

我们可以先做个简单的解释。Flink 是一个分布式处理引擎,所以我们的程序应该也是分布式运行的。在开发环境里,会通过多线程来模拟 Flink 集群运行。所以这里结果前的数字,其实就指示了本地执行的不同线程,对应着 Flink 运行时不同的并行资源。这样第一个乱序的问题也就解决了:既然是并行执行,不同线程的输出结果,自然也就无法保持输入的顺序了。另外需要说明,这里显示的编号为 1~13,是由于运行电脑的 CPU 的核心数来决定的,我自己的是16核的,所以默认模拟的并行线程有 16 个。这段代码不同的运行环境,得到的结果会是不同的。关于 Flink 程序并行执行的数量,可以通过设定“并行度”(Parallelism)来进行配置,我们会在后续详细讲解这些内容。


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 本人是重度書簽使用者,多年收藏積累的書簽有4萬多。 雖然我對書簽的文件夾進行了結構化的整理,但是每當添加新的書簽時候,還是很難快速的找到相關的文件夾。 因此開發這個小插件可以快速的對書簽進行添加和整理。 ...
  • 開源項目其實有一個成熟周期,這個周期大概是三年左右,自React框架在2013年發佈並引爆了前端框架的大潮,這個屬於前端的周期就此開始了。之後在2015年5月開源的React Native又開啟了屬於Web移動前端的周期,15-16年,18-19年,21-22年正好就是屬於移動前端的三個爆發點。 ...
  • 描述: 本篇文章為了記錄日常生活中或者項目中經常使用到的JS方法,會長期記錄... 數組中的方法 1.map和forEach方法 map 參數為回調函數,得到一個新數組 forEach 修改原數組,不會產生新數組 2.pop和push方法(棧結構) push 向數組末尾添加一個元素或者多個元素,會改 ...
  • 前言 在 《一篇帶你用 VuePress + Github Pages 搭建博客》中,我們使用 VuePress 搭建了一個博客,最終的效果查看:TypeScript 中文文檔。 本篇講講 SEO 中的一些細節優化。 1. 設置全局的 title、description、keywords // co ...
  • word-break: normal; // 此值為瀏覽器的預設屬性:以單詞為單位; keep-all 這個值由於相容性差,很少用;word-wrap: normal; // 此值為瀏覽器的預設屬性:以單詞為單位; 純中文:自動換行,一個漢字看做一個單詞; 純英文或純數字:看做一個單詞,不換行; 遇 ...
  • 經過前面兩天的學習,已經對Node.js有了一個初步的認識,今天繼續學習其他內容,並加以整理分享,如有不足之處,還請指正。 ...
  • 外觀模式是什麼 外觀模式是一種結構性設計模式,它能為程式庫、框架或者其他複雜的子系統提供一個統一的高層界面,使子系統更容易使用。外觀模式就是聚合多個介面實現,對外只暴露單個介面。隱藏子系統的複雜性。調用方不關心實現步驟。 為什麼要用外觀模式 當子系統提供的功能很多,而我們子需要多個子系統中很少的幾個 ...
  • 1. Consul 簡介 Consul是 HashiCorp 公司推出的開源工具,用於實現分散式系統的服務發現與配置。與其它分散式服 務註冊與發現的方案,Consul 的方案更“一站式”,內置了服務註冊與發現框 架、分佈一致性協議實 現、健康檢查、Key/Value 存儲、多數據中心方案,不再需要依 ...
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...