一篇文章扒掉“橋梁Handler”的底褲

来源:https://www.cnblogs.com/BlueSocks/archive/2022/03/21/16035178.html
-Advertisement-
Play Games

Android跨進程要掌握的是Binder, 而同一進程中最重要的應該就是Handler 消息通信機制了。我這麼說,大家不知道是否認同,如果認同,還希望能給一個關註哈。 什麼是Handler? Handler主要用於非同步消息的處理:當發出一個消息之後,首先進入一個消息隊列,發送消息的[函數]即刻返回 ...


典型的生产者-消费者模式
Android跨进程要掌握的是Binder, 而同一进程中最重要的应该就是Handler 消息通信机制了。我这么说,大家不知道是否认同,如果认同,还希望能给一个关注哈。

什么是Handler?

Handler主要用于异步消息的处理:当发出一个消息之后,首先进入一个消息队列,发送消息的[函数]即刻返回,而另外一个部分在消息队列中逐一将消息取出,然后对消息进行处理,也就是发送消息和接收消息不是同步的处理。 这种机制通常用来处理相对耗时比较长的操作。

Handler特点

  1. 传递Message。用于接受子线程发送的数据, 并用此数据配合主线程更新UI。

    在Android中,对于UI的操作通常需要放在主线程中进行操作。如果在子线程中有关于UI的操作,那么就需要把数据消息作为一个Message对象发送到消息队列中,然后,由Handler中的handlerMessage方法处理传过来的数据信息,并操作UI。当然,Handler对象是在主线程中初始化的,因为它需要绑定在主线程的消息队列中。

    类sendMessage(Message msg)方法实现发送消息的操作。 在初始化Handler对象时重写的handleMessage方法来接收Message并进行相关操作。

  2. 传递Runnable对象。用于通过Handler绑定的消息队列,安排不同操作的执行顺序。

    Handler对象在进行初始化的时候,会默认的自动绑定消息队列。利用类post方法,可以将Runnable对象发送到消息队列中,按照队列的机制按顺序执行不同的Runnable对象中的run方法。

Handler怎么用?

public class HandlerActivity extends AppCompatActivity {
    private static final String TAG = "HandlerActivity";
    @Override
    protected void onCreate(@Nullable Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        testSendMessage();
    }

    public void testSendMessage() {
         Handler handler = new MyHandler(this);
         Message message = Message.obtain();
         message.obj = "test handler send message";
         handler.sendMessage(message);
    }
    
    //注1: 为什么要用静态内部???
    static class MyHandler extends Handler {
        WeakReference<AppCompatActivity> activityWeakReference; // 注2:为何要用弱引用???
        public MyHandler(AppCompatActivity activity) {
            activityWeakReference = new WeakReference<>(activity);
        }

        @Override
        public void handleMessage(@NonNull Message msg) {
            super.handleMessage(msg);
            Log.d(TAG, (String) msg.obj);
        }
    }
}

Handler源码怎么读?

从使用方式的场景,咱们一步一步的探究里面是怎么实现的,还有上面的标注的两点,在后面我都会介绍的,各位客官听我慢慢道来。首先,看下四大金刚关系图,文字表述再多,不如一张图来的直接。

“四大金刚”
通过上图就可以简单看出Handler、MessageQueue、Message、Looper 这四者是怎么样互相持有对方的,大概可以了解消息的传递。

下面我们先来一张时序图,看下消息是怎么一步步发送出来的。


此刻,应该要开车了。前方高能!!!

  1. 进入的是Handler.sendMessage 方法
public final boolean sendMessage(@NonNull Message msg) {
    return sendMessageDelayed(msg, 0);
}
  1. 接下来继续调用Handler.sendMessageDelayed方法
public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
    if (delayMillis < 0) {
        delayMillis = 0;
    }
    return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
  1. 接着走Handler.sendMessageAtTime 方法,这里面就要用到MessageQueue 对象了,此处说明一下,这个mQueue 是在哪里获取到的,是在Handler 构造方法里。此处贴图,从图中可以看出mLooper=Looper.myLooper() mQueue=mLooper.mQueue Handler 中的MessageQueue 是Looper 中持有的MessageQueue 对象 。


注1 为啥要用静态内部类---->如果我们使用Handler 类,没有用static 关键字修饰的话,则会输出Log: The following Handler class should be static or leaks might occur: 会提示你可能会引起内存泄漏。因此在注1 处我用了static 修饰。

好,这里就说这么多,接着开车:

public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}
  1. 接着时序图上的流程走,此时要进入到MessageQueue.enqueueMessage 方法中,该方法就是将msg 对象存入到MessageQueue 队列中,注意此处,将该handler 对象赋值给了msg.target,这个后面会用到的,很关键。
private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
        long uptimeMillis) {
    msg.target = this;
    msg.workSourceUid = ThreadLocalWorkSource.getUid();

    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis); //3,即将进入MessageQueue.enqueueMessage 方法。
}
  1. 接着来看MessageQueue.enqueueMessage 方法,该方法就是按照时间的顺序插入到Message 这个链表结构的数据对象中去。
boolean enqueueMessage(Message msg, long when) {
    if (msg.target == null) { //4. 后面说明,这个也就是四大金刚图里的msg.target 所持有的Handler 对象。
        throw new IllegalArgumentException("Message must have a target.");
    }

    synchronized (this) {
        ...
        msg.markInUse();
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
        if (p == null || when == 0 || when < p.when) {
            // New head, wake up the event queue if blocked.
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            // 链表的插入操作,不太熟悉的可以看看数据结构。(此处是根据时间来排序的)
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }

        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            nativeWake(mPtr); //画重点,此处唤醒等待的next 方法。
        }
    }
    return true;
}

此时,一条消息就相当于入队了。 MessageQueue 从名称来看是队列,实际上,使用的还是Message.next 指针来进行操作的,也即是链表的操作。消息的入队完成,后面将会介绍该消息是怎么发送出去的。

  1. Loop.loop方法,敲重点。省略了部分代码,只关注核心代码。这里用到了死循环,不停的获取Message 对象,获取到之后直接调用Message.target 变量所持有的Handler 对象,然后调用Handler.dispatchMessage 方法,这样就完成了消息的分发。
public static void loop() {
    final Looper me = myLooper();
    ...
    final MessageQueue queue = me.mQueue;
    ...
    for (;;) {
        Message msg = queue.next(); // might block   //7.通过MessageQueue.next()方法获取Message对象。
        ...
        final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
        final long end;
        try {
            msg.target.dispatchMessage(msg);
            end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
        } finally {
            if (traceTag != 0) {
                Trace.traceEnd(traceTag);
            }
        }
        ...
        msg.recycleUnchecked();
    }
}

7-8. MessageQueue.next() 方法获取Message 对象。

Message next() {
    ...
    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) { //死循环
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }

        nativePollOnce(ptr, nextPollTimeoutMillis);   // 5: 避免了阻塞的关键点,释放资源,处于等待。疑点:处于等待,肯定需要一个东西来唤醒它。上面第5步分析enqueueMessage的时候有行代码if (needWake) {
            nativeWake(mPtr); //画重点,此处唤醒等待的next 方法。
        } 。

        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) { //******此条件可以先不看,因为通过Handler 发送的消息target 都会持有Handler,该逻辑不会触发。消息同步屏障的时候会优先触发该逻辑。
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) { //查找当前的msg 对象。
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                    msg.markInUse();
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }
         ...
        nextPollTimeoutMillis = 0;
    }
}
  1. Handler.dispatchMessage 方法,此处有判断,如果在Activity中使用view.post方法调用的时候,就会走到handleCallback 回调中。通过sendMessagexxx函数发送消息的就会走到handleMessage回调中去。
/**
 * Handle system messages here.
 */
public void dispatchMessage(Message msg) {
    if (msg.callback != null) {
        handleCallback(msg);
    } else {
        if (mCallback != null) {
            if (mCallback.handleMessage(msg)) {
                return;
            }
        }
        handleMessage(msg);
    }
}

该方法会会将msg 对象发送到客户端定义Handler 的地方,重写的handleMessage 方法。至此,Handler 发送消息的流程大致介绍完成。

总结

Handler 发送消息的时候,在Handler.enqueueMessage 方法中,将该Handler 对象添加到Message中的target 属性中,这样就完成了Message 持有Handler 的操作,为最后Message.target.dispatchMessage 做了保证。然后将该Message 对象放入到MessageQueue中的Message.next 中去,完成了消息链表的添加;而这个MessageQueue 是Looper 中所持有的对象,这样就可以通过Looper类通过对MessageQueue.next()---->Message.next()--->Message.target.dispatchMessage(msg)完成了消息的分发。

知识点补充

  1. Looper 对象是怎么new 出来的?

    上图看出是在应用程序进程的ActivityThread 类中的main() 函数中调用了Looper.prepareMainLooper() 方法,就new 出来了主线程中的Looper.

    上图也看出,这个Looper.prepareMainLooper()方法是系统调用的,开发者不能再次调用了,否则会抛出异常。

    prepare这个方法真正的new Looper 了。接着来看看Looper 的构造函数


此处创建了MessageQueue, Handler 中的MessageQueue 就是这块创建的。

  1. 为什么将Looper 保存在ThreadLocal 中?

ThreadLocal:线程的变量副本,每个线程隔离.我的理解就是,ThreadLocal 内部使用了当前线程为Key,需要存储的对象为Value,通过字典保存起来的,这样客户端在获取的时候,当前线程就只会获取一份保存的Value.回到Looper中,就可以知道一个线程里按理说就会只有一个Looper。

  1. Message 为什么推荐使用obtain() 方式获取Message对象,而不推荐使用new Message()?

这里涉及到池的技术的应用: Message中维护了一个消息池,消息使用完就会回收。减少对象创建和销毁的开销;java 当中的线程池也是用到了该思想。

  1. 同步屏障:

同步屏障机制的作用,是让这个绘制消息得以越过其他的消息,优先被执行。系统中UI绘制会使用到同步屏障,开发中基本用不到。核心代码: 先设置一个target=null 的消息,插入到消息链表的头部。

然后在MessageQueue.next 中 优先查找同步屏障中的消息asyncHronous 设置为true的异步消息。

  1. Handler为什么会导致内存泄漏以及解决方案?

Handler导致内存泄漏一般发生在发送延迟消息的时候,当Activity关闭之后,延迟消息还没发出,那么主线程中的MessageQueue就会持有这个消息的引用,而这个消息是持有Handler的引用,而handler作为匿名内部类持有了Activity的引用,所以就有了以下的一条引用链。
解决:1.使用静态内部类,如果要调用Activity中的方法,就可以在静态内部类中设置一个
WeakReference activityWeakReference; 引用。

2.在Activity销毁的时候,即onDestory()方法中调用handler.removeCallbacks,移除runnable。

结尾

OK,本次的Android进阶技术之Handler到此就全部写完了,希望喜欢的朋友不要吝啬你的赞,你的评论,点赞,收藏就是对我最大的支持,记得关注我哦,咱们文章每日都会更新,感谢大家的观看。


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 視圖 常見的資料庫對象 視圖概述 為什麼使用視圖 可以幫助我們使用表中的部分數據,對其修改可以改變原來表中的值 可以簡化查詢 控制數據的訪問(許可權) 視圖的理解 視圖是一種虛擬表,本身不具有數據的,占用極少的記憶體 視圖建立在已有表的基礎上,我們可以視圖所依據的表叫做基表 視圖的創建和刪除只會影響視圖 ...
  • 目前各大公司的產品需求和內部決策對於數據實時性的要求越來越迫切,需要實時數倉的能力來賦能。傳統離線數倉的數據時效性是 T+1,調度頻率以天為單位,無法支撐實時場景的數據需求。即使能將調度頻率設置成小時,也只能解決部分時效性要求不高的場景,對於實效性要求很高的場景還是無法優雅的支撐。因此實時使用數據的... ...
  • 菜鳥供應鏈金融慢sql治理已經有一段時間,自己負責的應用持續很長時間沒有慢sql告警,現階段在推進組內其他成員治理應用慢sql。這裡把治理過程中的一些實踐拿出來分享下。 ...
  • 最近安裝SQL 2019遇到這個問題,試過網上幾乎所有辦法,都安裝不上。最後在微軟社區提問解決了,由於這個問題不常見,並且網上幾乎沒有正確的解決方案,因此將我的解決過程及經驗記錄分享一下,也為後來者提供參考。 1、如果是許可權問題,現有的網上很多修改許可權的方案是可以解決安裝問題的,在此不做介紹。 2、 ...
  • 一、介紹 Redis誕生於2009年全稱是Remote Dictionary Server,遠程詞典伺服器,是一個基於記憶體 的鍵值型NoSQL資料庫。 特征: ●鍵值(key-value)型, value支持 多種不同數據結構,功能豐富 ●單線程, 每個命令具備原子性 ●低延遲,速度快(基於記憶體、1 ...
  • 前言 21世紀,安卓虛擬機正在一步步的走入我們的生活,小到個人部分朋友在電腦上使用安卓虛擬機玩手游,大到安卓從業人員在虛擬機上面跑程式。不得不承認,對於每一位Androider 而言,安卓虛擬機是我們日常開發中不可或缺的一環,但是關於安卓虛擬機的一些知識點和小細節你真的完全掌握了麽?本文將就主要包括 ...
  • 想獲取一首歌的伴奏卻找不到資源怎麼辦?沒關係,我們可以自己解決。音頻編輯服務提供音源分離的功能,幫助開發者在應用中構建人聲與伴奏分離的功能。 目前,音源分離功能已經開放了人聲與伴奏、樂器等多種分離的方式,可以實時解析並將樂器中的人聲和各種樂器元素提取到獨立的音軌上,滿足創作者對伴奏製作、扒帶、音樂創 ...
  • 一、安裝flutter環境 1、下載Flutter sdk包,地址:https://flutter.dev/docs/get-started/install/windows 2、將壓縮包解壓到任意文件夾 3、將flutter命令文件添加到環境變數中 4、在Android Studio中下載Flutt ...
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...