FasterTransformer 運算元 nvidia在開源的FasterTransformer的代碼中,提供tensorrt和tensorflow的自定義運算元編譯和py調用示例,詳見 FasterTransformer.py 。但是如果使用tensorflow的自定義運算元十分不方便,其batch ...
FasterTransformer 運算元
nvidia在開源的FasterTransformer的代碼中,提供tensorrt和tensorflow的自定義運算元編譯和py調用示例,詳見FasterTransformer.py。但是如果使用tensorflow的自定義運算元十分不方便,其batch size 和 sequence length都是固定的。現在提供一種方法讓其變成動態的,方法如下:
- 修改bert_transformer_op.cc,將batch_size,from_seq_len,to_seq_len attr屬性去掉,改稱input參數,代碼如下:
.Input("output_bias: T")
.Input("output_layernorm_beta: T")
.Input("output_layernorm_gamma: T")
+ .Input("batch_size: int32")
+ .Input("from_seq_len: int32")
.Output("output: T")
.Attr("T: {float, half}")
- .Attr("batch_size: int >= 1")
- .Attr("from_seq_len: int >= 1")
- .Attr("to_seq_len: int >= 1")
+ //.Attr("batch_size: int >= 1")
+ //.Attr("from_seq_len: int >= 1")
+ //.Attr("to_seq_len: int >= 1")
.Attr("head_num: int >= 1")
.Attr("size_per_head: int >= 1")
.SetShapeFn([](shape_inference::InferenceContext *c) {
int batch_size, from_seq_len, to_seq_len, head_num, size_per_head;
- c->GetAttr("batch_size", &batch_size);
- c->GetAttr("from_seq_len", &from_seq_len);
- c->GetAttr("to_seq_len", &to_seq_len);
+ //c->GetAttr("batch_size", &batch_size);
+ //c->GetAttr("from_seq_len", &from_seq_len);
+ //c->GetAttr("to_seq_len", &to_seq_len);
c->GetAttr("head_num", &head_num);
c->GetAttr("size_per_head", &size_per_head);
- c->set_output(0, c->MakeShape({batch_size * from_seq_len, head_num * size_per_head}));
+ //c->set_output(0, c->MakeShape({batch_size * from_seq_len, head_num * size_per_head}));
+ c->set_output(0, c->input(0));
return Status::OK();
});
template <typename Device, typename T>
@@ -70,14 +71,15 @@ class BertTransformerOp : public OpKernel
public:
explicit BertTransformerOp(OpKernelConstruction *context) : OpKernel(context)
{
- OP_REQUIRES_OK(context, context->GetAttr("batch_size", &batch_size_));
- OP_REQUIRES_OK(context, context->GetAttr("from_seq_len", &from_seq_len_));
- OP_REQUIRES_OK(context, context->GetAttr("to_seq_len", &to_seq_len_));
+ //OP_REQUIRES_OK(context, context->GetAttr("batch_size", &batch_size_));
+ //OP_REQUIRES_OK(context, context->GetAttr("from_seq_len", &from_seq_len_));
+ //OP_REQUIRES_OK(context, context->GetAttr("to_seq_len", &to_seq_len_));
OP_REQUIRES_OK(context, context->GetAttr("head_num", &head_num_));
OP_REQUIRES_OK(context, context->GetAttr("size_per_head", &size_per_head_));
- OP_REQUIRES(context, (from_seq_len_ == to_seq_len_),
- errors::InvalidArgument("Only support from_seq_len == to_seq_len"));
+ //printf("++++++++ %d =%d \n", from_seq_len_, to_seq_len_)
+ //OP_REQUIRES(context, (from_seq_len_ == to_seq_len_),
+ /// errors::InvalidArgument("Only support from_seq_len == to_seq_len"));
try
{
@@ -95,6 +97,11 @@ class BertTransformerOp : public OpKernel
BertEncoderTransformer<EncoderTraits_> *encoder_transformer_;
try
{
+
+ batch_size_ = context->input(19).flat<int32>().size()/3;
+ from_seq_len_ = context->input(20).flat<int32>().size()/3;
+ to_seq_len_ = from_seq_len_;
+ //printf("==>%d %d\n", batch_size_, from_seq_len_);
fastertransformer::Allocator<AllocatorType::TF> allocator_(context);
encoder_transformer_ = new BertEncoderTransformer<EncoderTraits_>(allocator_,
batch_size_, from_seq_len_, to_seq_len_, head_num_, size_per_head_);
@@ -104,7 +111,7 @@ class BertTransformerOp : public OpKernel
OP_REQUIRES(context, false, errors::Internal(error.what()));
}
- OP_REQUIRES(context, context->num_inputs() == 19, errors::InvalidArgument("Less input arguments"));
+ OP_REQUIRES(context, context->num_inputs() == 21, errors::InvalidArgument("Less input arguments"));
EncoderInitParam<DataType_> param; //init param here
由於input在cuda的顯存中,直接讀取input的數值是不可能的(把數值從顯存拷貝記憶體中,比較耗時),但是我們可以在記憶體中直接讀取形狀的size,我們偽造一個形狀的size,通過這個size來獲取batch_size 和 seq_len。
- FasterTransformer.py修改如下:
...
fast_list_tensor = tf.shape(input_tensor)
...
layer_output = transformer_op_module.bert_transformer(
layer_input,
layer_input,
trainable_vars[0], trainable_vars[2], trainable_vars[4], trainable_vars[1], trainable_vars[3], trainable_vars[5],
attention_mask,
trainable_vars[6], trainable_vars[7], trainable_vars[8], trainable_vars[9], trainable_vars[10], trainable_vars[11],
trainable_vars[12], trainable_vars[13], trainable_vars[14], trainable_vars[15], tf.tile([[1],[2],[3]], [1,fast_list_tensor[0]]),
tf.tile([[1],[2],[3]], [1,fast_list_tensor[1]]),
#batch_size=batch_size,
#from_seq_len=seq_length,
#to_seq_len=seq_length,
head_num=num_attention_heads, size_per_head=attention_head_size)
- 通過以上修改,我們在使用transformer_op_module的時候,就不需要強制指定batch size 和 seq length了, 表示生成模型的時候,類似這麼配置:
input_ids = tf.placeholder(tf.int32,(None, None), 'input_ids')
input_mask = tf.placeholder(tf.float32,(None, None), 'input_mask')
input_type_ids = tf.placeholder(tf.int32,(None, None), 'input_type_ids')
便可以生成支持動態batch和動態seq len的tensorflow模型了。