Turtle庫的建立——漢諾塔 1、首先是要用遞歸方法來完成這個漢諾塔法則 2、其次,就要編程好代碼以及熟練掌握Turtle函數庫 一、 相關代碼如下: (盤子最多19個) 二、 試驗結果如下: 三、 實驗說明: 我們可以更改代碼(drawpole_1)這個函數中的 第一個t.goto中400可改為 ...
Turtle庫的建立——漢諾塔
1、首先是要用遞歸方法來完成這個漢諾塔法則
2、其次,就要編程好代碼以及熟練掌握Turtle函數庫
一、 相關代碼如下:
import turtle class Stack: def __init__(self): self.items = [] def isEmpty(self): return len(self.items) == 0 def push(self, item): self.items.append(item) def pop(self): return self.items.pop() def peek(self): if not self.isEmpty(): return self.items[len(self.items) - 1] def size(self): return len(self.items) def drawpole_3(): t = turtle.Turtle() t.hideturtle() def drawpole_1(k): t.up() t.pensize(10) t.speed(100) t.goto(400*(k-1), 400) t.down() t.goto(400*(k-1), -100) t.goto(400*(k-1)-20, -100) t.goto(400*(k-1)+20, -100) drawpole_1(0) drawpole_1(1) drawpole_1(2) def creat_plates(n): plates=[turtle.Turtle() for i in range(n)] for i in range(n): plates[i].up() plates[i].hideturtle() plates[i].shape("square") plates[i].shapesize(1,20-i) plates[i].goto(-400,-90+20*i) plates[i].showturtle() return plates def pole_stack(): poles=[Stack() for i in range(3)] return poles def moveDisk(plates,poles,fp,tp): mov=poles[fp].peek() plates[mov].goto((fp-1)*400,550) plates[mov].goto((tp-1)*400,550) l=poles[tp].size() plates[mov].goto((tp-1)*400,-90+20*l) def moveTower(plates,poles,height,fromPole, toPole, withPole): if height >= 1: moveTower(plates,poles,height-1,fromPole,withPole,toPole) moveDisk(plates,poles,fromPole,toPole) poles[toPole].push(poles[fromPole].pop()) moveTower(plates,poles,height-1,withPole,toPole,fromPole) myscreen=turtle.Screen() drawpole_3() n=int(input("請輸入漢諾塔的層數並回車:\n")) plates=creat_plates(n) poles=pole_stack() for i in range(n): poles[0].push(i) moveTower(plates,poles,n,0,2,1) myscreen.exitonclick()
(盤子最多19個)
二、 試驗結果如下:
三、 實驗說明:
我們可以更改代碼(drawpole_1)這個函數中的
第一個t.goto中400可改為其他來達到你想要的桿的長度
再更改
函數中的
20-i這部分,可以得到你想要限制的盤的個數,這樣就完成了漢諾塔問題。