系統啟動一個線程的成本是比較高的,因為它涉及到與操作系統的交互,使用線程池的好處是提高性能,當系統中包含大量併發的線程時,會導致系統性能劇烈下降,甚至導致JVM崩潰,而線程池的最大線程數參數可以控制系統中併發線程數不超過次數。 一、Executors 工廠類用來產生線程池,該工廠類包含以下幾個靜態工 ...
系統啟動一個線程的成本是比較高的,因為它涉及到與操作系統的交互,使用線程池的好處是提高性能,當系統中包含大量併發的線程時,會導致系統性能劇烈下降,甚至導致JVM崩潰,而線程池的最大線程數參數可以控制系統中併發線程數不超過次數。
一、Executors 工廠類用來產生線程池,該工廠類包含以下幾個靜態工廠方法來創建對應的線程池。創建的線程池是一個ExecutorService對象,使用該對象的submit方法或者是execute方法執行相應的Runnable或者是Callable任務。線程池本身在不再需要的時候調用shutdown()方法停止線程池,調用該方法後,該線程池將不再允許任務添加進來,但是會直到已添加的所有任務執行完成後才死亡。
1、newCachedThreadPool(),創建一個具有緩存功能的線程池,提交到該線程池的任務(Runnable或Callable對象)創建的線程,如果執行完成,會被緩存到CachedThreadPool中,供後面需要執行的任務使用。
import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class CacheThreadPool { static class Task implements Runnable { @Override public void run() { System.out.println(this + " " + Thread.currentThread().getName() + " AllStackTraces map size: " + Thread.currentThread().getAllStackTraces().size()); } } public static void main(String[] args) { ExecutorService cacheThreadPool = Executors.newCachedThreadPool(); //先添加三個任務到線程池 for(int i = 0 ; i < 3; i++) { cacheThreadPool.execute(new Task()); } //等三個線程執行完成後,再次添加三個任務到線程池 try { Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } for(int i = 0 ; i < 3; i++) { cacheThreadPool.execute(new Task()); } } }
執行結果如下:
CacheThreadPool$Task@2d312eb9 pool-1-thread-1 AllStackTraces map size: 7 CacheThreadPool$Task@59522b86 pool-1-thread-3 AllStackTraces map size: 7 CacheThreadPool$Task@73dbb89f pool-1-thread-2 AllStackTraces map size: 7 CacheThreadPool$Task@5795cedc pool-1-thread-3 AllStackTraces map size: 7 CacheThreadPool$Task@256d5600 pool-1-thread-1 AllStackTraces map size: 7 CacheThreadPool$Task@7d1c5894 pool-1-thread-2 AllStackTraces map size: 7
線程池中的線程對象進行了緩存,當有新任務執行時進行了復用。但是如果有特別多的併發時,緩存線程池還是會創建很多個線程對象。
2、newFixedThreadPool(int nThreads) 創建一個指定線程個數,線程可復用的線程池。
import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class FixedThreadPool { static class Task implements Runnable { @Override public void run() { System.out.println(this + " " + Thread.currentThread().getName() + " AllStackTraces map size: " + Thread.currentThread().getAllStackTraces().size()); } } public static void main(String[] args) { ExecutorService fixedThreadPool = Executors.newFixedThreadPool(3); // 先添加三個任務到線程池 for (int i = 0; i < 5; i++) { fixedThreadPool.execute(new Task()); } // 等三個線程執行完成後,再次添加三個任務到線程池 try { Thread.sleep(3); } catch (InterruptedException e) { e.printStackTrace(); } for (int i = 0; i < 3; i++) { fixedThreadPool.execute(new Task()); } } }
執行結果:
FixedThreadPool$Task@7045c12d pool-1-thread-2 AllStackTraces map size: 7
FixedThreadPool$Task@50fa0bef pool-1-thread-2 AllStackTraces map size: 7
FixedThreadPool$Task@ccb1870 pool-1-thread-2 AllStackTraces map size: 7
FixedThreadPool$Task@7392b4e3 pool-1-thread-1 AllStackTraces map size: 7
FixedThreadPool$Task@5bdeff18 pool-1-thread-2 AllStackTraces map size: 7
FixedThreadPool$Task@7d5554e1 pool-1-thread-1 AllStackTraces map size: 7
FixedThreadPool$Task@24468092 pool-1-thread-3 AllStackTraces map size: 7
FixedThreadPool$Task@fa7b978 pool-1-thread-2 AllStackTraces map size: 7
3、newSingleThreadExecutor(),創建一個只有單線程的線程池,相當於調用newFixedThreadPool(1)
4、newSheduledThreadPool(int corePoolSize),創建指定線程數的線程池,它可以在指定延遲後執行線程。也可以以某一周期重覆執行某一線程,知道調用shutdown()關閉線程池。
示例如下:
import java.util.concurrent.Executors; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.TimeUnit; public class ScheduledThreadPool { static class Task implements Runnable { @Override public void run() { System.out.println("time " + System.currentTimeMillis() + " " + Thread.currentThread().getName() + " AllStackTraces map size: " + Thread.currentThread().getAllStackTraces().size()); } } public static void main(String[] args) { ScheduledExecutorService scheduledExecutorService = Executors.newScheduledThreadPool(3); scheduledExecutorService.schedule(new Task(), 3, TimeUnit.SECONDS); scheduledExecutorService.scheduleAtFixedRate(new Task(), 3, 5, TimeUnit.SECONDS); try { Thread.sleep(30 * 1000); } catch (InterruptedException e) { e.printStackTrace(); } scheduledExecutorService.shutdown(); } }
運行結果如下:
time 1458921795240 pool-1-thread-1 AllStackTraces map size: 6 time 1458921795241 pool-1-thread-2 AllStackTraces map size: 6 time 1458921800240 pool-1-thread-1 AllStackTraces map size: 7 time 1458921805240 pool-1-thread-1 AllStackTraces map size: 7 time 1458921810240 pool-1-thread-1 AllStackTraces map size: 7 time 1458921815240 pool-1-thread-1 AllStackTraces map size: 7 time 1458921820240 pool-1-thread-1 AllStackTraces map size: 7
由運行時間可看出,任務是按照5秒的周期執行的。
5、newSingleThreadScheduledExecutor() 創建一個只有一個線程的線程池,同調用newScheduledThreadPool(1)。
二、ForkJoinPool和ForkJoinTask
ForkJoinPool是ExecutorService的實現類,支持將一個任務劃分為多個小任務並行計算,在把多個小任務的計算結果合併成總的計算結果。它有兩個構造函數
ForkJoinPool(int parallelism)創建一個包含parallelism個並行線程的ForkJoinPool。
ForkJoinPool(),以Runtime.availableProcessors()方法返回值作為parallelism參數來創建ForkJoinPool。
ForkJoinTask 代表一個可以並行,合併的任務。它是實現了Future<T>介面的抽象類,它有兩個抽象子類,代表無返回值任務的RecuriveAction和有返回值的RecursiveTask。可根據具體需求繼承這兩個抽象類實現自己的對象,然後調用ForkJoinPool的submit 方法執行。
RecuriveAction 示例如下,實現並行輸出0-300的數字。
import java.util.concurrent.ForkJoinPool; import java.util.concurrent.RecursiveAction; import java.util.concurrent.TimeUnit; public class ActionForkJoinTask { static class PrintTask extends RecursiveAction { private static final int THRESHOLD = 50; private int start; private int end; public PrintTask(int start, int end) { this.start = start; this.end = end; } @Override protected void compute() { if (end - start < THRESHOLD) { for(int i = start; i < end; i++) { System.out.println(Thread.currentThread().getName() + " " + i); } } else { int middle = (start + end) / 2; PrintTask left = new PrintTask(start, middle); PrintTask right = new PrintTask(middle, end); left.fork(); right.fork(); } } } public static void main(String[] args) { ForkJoinPool pool = new ForkJoinPool(); pool.submit(new PrintTask(0, 300)); try { pool.awaitTermination(2, TimeUnit.SECONDS); } catch (InterruptedException e) { e.printStackTrace(); } pool.shutdown(); } }
在拆分小任務後,調用任務的fork()方法,加入到ForkJoinPool中並行執行。
RecursiveTask示例,實現並行計算100個整數求和。拆分為每20個數求和後獲取結果,在最後合併為最後的結果。
import java.util.Random; import java.util.concurrent.ExecutionException; import java.util.concurrent.ForkJoinPool; import java.util.concurrent.Future; import java.util.concurrent.RecursiveTask; public class TaskForkJoinTask { static class CalTask extends RecursiveTask<Integer> { private static final int THRESHOLD = 20; private int arr[]; private int start; private int end; public CalTask(int[] arr, int start, int end) { this.arr = arr; this.start = start; this.end = end; } @Override protected Integer compute() { int sum = 0; if (end - start < THRESHOLD) { for (int i = start; i < end; i++) { sum += arr[i]; } System.out.println(Thread.currentThread().getName() + " sum:" + sum); return sum; } else { int middle = (start + end) / 2; CalTask left = new CalTask(arr, start, middle); CalTask right = new CalTask(arr, middle, end); left.fork(); right.fork(); return left.join() + right.join(); } } } public static void main(String[] args) { int arr[] = new int[100]; Random random = new Random(); int total = 0; for (int i = 0; i < arr.length; i++) { int tmp = random.nextInt(20); total += (arr[i] = tmp); } System.out.println("total " + total); ForkJoinPool pool = new ForkJoinPool(4); Future<Integer> future = pool.submit(new CalTask(arr, 0, arr.length)); try { System.out.println("cal result: " + future.get()); } catch (InterruptedException e) { e.printStackTrace(); } catch (ExecutionException e) { e.printStackTrace(); } pool.shutdown(); } }
執行結果如下:
total 912 ForkJoinPool-1-worker-2 sum:82 ForkJoinPool-1-worker-2 sum:123 ForkJoinPool-1-worker-2 sum:144 ForkJoinPool-1-worker-3 sum:119 ForkJoinPool-1-worker-2 sum:106 ForkJoinPool-1-worker-2 sum:128 ForkJoinPool-1-worker-2 sum:121 ForkJoinPool-1-worker-3 sum:89 cal result: 912
子任務執行完後,調用任務的join()方法獲取子任務執行結果,再相加獲得最後的結果。