Mongodb視圖可以讓查詢數據變的更加方便,索引讓查詢數據變得更加快捷,本文介紹如何使用Mongodb的視圖功能和索引功能 ...
準備工作
準備2個集合的數據,後面視圖和索引都會用到
1個訂單集合,一個收款信息集合
var orders = new Array(); var shipping = new Array(); var addresses = ["廣西省玉林市", "湖南省岳陽市", "湖北省荊州市", "甘肅省蘭州市", "吉林省松原市", "江西省景德鎮", "遼寧省沈陽市", "福建省廈門市", "廣東省廣州市", "北京市朝陽區"]; for (var i = 10000; i < 20000; i++) { var orderNo = i + Math.random().toString().substr(2, 5); orders[i] = { orderNo: orderNo, userId: i, price: Math.round(Math.random() * 10000) / 100, qty: Math.floor(Math.random() * 10) + 1, orderTime: new Date(new Date().setSeconds(Math.floor(Math.random() * 10000))) }; var address = addresses[Math.floor(Math.random() * 10)]; shipping[i] = { orderNo: orderNo, address: address, recipienter: "Wilson", province: address.substr(0, 3), city: address.substr(3, 3) } } db.order.insert(orders); db.shipping.insert(shipping);
視圖
概述
A MongoDB view is a queryable object whose contents are defined by an aggregation pipeline on other collections or views. MongoDB does not persist the view contents to disk. A view’s content is computed on-demand when a client queries the view. MongoDB can require clients to have permission to query the view. MongoDB does not support write operations against views.
Mongodb的視圖基本上和SQL的視圖一樣
- 數據源(集合或視圖)
- 提供查詢
- 不實際存儲硬碟
- 客戶端發起請求查詢時計算而得
1. 創建視圖
有兩種方法創建視圖
db.createCollection( "<viewName>", { "viewOn" : "<source>", "pipeline" : [<pipeline>], "collation" : { <collation> } } )
db.createView( "<viewName>", "<source>", [<pipeline>], { "collation" : { <collation> } } )
一般使用db.createView
viewName : 必須,視圖名稱
source : 必須,數據源,集合/視圖
[<pipeline>] : 可選,一組管道,可見管道是Mongodb比較重要的一環
1.1 單個集合創建視圖
假設現在查看當天最高的10筆訂單視圖,例如後臺某個地方需要實時顯示金額最高的訂單
db.createView( "orderInfo", //視圖名稱 "order", //數據源 [ //篩選符合條件的訂單,大於當天,這裡要註意時區 { $match: { "orderTime": { $gte: ISODate("2020-04-13T16:00:00.000Z") } } }, //按金額倒序 { $sort: { "price": -1 } }, //限制10個文檔 { $limit: 10 }, //選擇要顯示的欄位 //0: 排除欄位,若欄位上使用(_id除外),就不能有其他包含欄位 //1: 包含欄位 { $project: { _id: 0, orderNo: 1, price: 1, orderTime: 1 } } ] )
然後就可以直接使用orderInfo這個視圖查詢數據
db.orderInfo.find({})
返回結果
{ "orderNo" : "1755149436", "price" : 100, "orderTime" : ISODate("2020-04-14T13:49:42.220Z") } { "orderNo" : "1951423853", "price" : 99.99, "orderTime" : ISODate("2020-04-14T15:08:07.240Z") } { "orderNo" : "1196303215", "price" : 99.99, "orderTime" : ISODate("2020-04-14T15:15:41.158Z") } { "orderNo" : "1580069456", "price" : 99.98, "orderTime" : ISODate("2020-04-14T13:41:07.199Z") } { "orderNo" : "1114480559", "price" : 99.98, "orderTime" : ISODate("2020-04-14T13:31:58.150Z") } { "orderNo" : "1229542817", "price" : 99.98, "orderTime" : ISODate("2020-04-14T15:15:35.162Z") } { "orderNo" : "1208031402", "price" : 99.94, "orderTime" : ISODate("2020-04-14T14:13:02.160Z") } { "orderNo" : "1680622670", "price" : 99.93, "orderTime" : ISODate("2020-04-14T15:17:25.210Z") } { "orderNo" : "1549824953", "price" : 99.92, "orderTime" : ISODate("2020-04-14T13:09:41.196Z") } { "orderNo" : "1449930147", "price" : 99.92, "orderTime" : ISODate("2020-04-14T15:16:15.187Z") }
1.2 多個集合創建視圖
其實跟單個是集合是一樣,只是多了$lookup連接操作符,視圖根據管道最終結果顯示,所以可以關聯多個集合(若出現這種情況就要考慮集合設計是否合理,mongodb本來就是文檔型資料庫)
db.orderDetail.drop() db.createView( "orderDetail", "order", [ { $lookup: { from: "shipping", localField: "orderNo", foreignField: "orderNo", as: "shipping" } }, { $project: { "orderNo": 1, "price": 1, "shipping.address": 1 } } ] )
查詢視圖,得到如下結果
{ "_id" : ObjectId("5e95af8c4ef6faf974b4a6c3"), "orderNo" : "1000039782", "price" : 85.94, "shipping" : [ { "address" : "北京市朝陽區" } ] } { "_id" : ObjectId("5e95af8c4ef6faf974b4a6c4"), "orderNo" : "1000102128", "price" : 29.04, "shipping" : [ { "address" : "吉林省松原市" } ] } { "_id" : ObjectId("5e95af8c4ef6faf974b4a6c5"), "orderNo" : "1000214514", "price" : 90.69, "shipping" : [ { "address" : "湖南省岳陽市" } ] } { "_id" : ObjectId("5e95af8c4ef6faf974b4a6c6"), "orderNo" : "1000337987", "price" : 75.05, "shipping" : [ { "address" : "遼寧省沈陽市" } ] } { "_id" : ObjectId("5e95af8c4ef6faf974b4a6c7"), "orderNo" : "1000468969", "price" : 76.84, "shipping" : [ { "address" : "江西省景德鎮" } ] } { "_id" : ObjectId("5e95af8c4ef6faf974b4a6c8"), "orderNo" : "1000572219", "price" : 60.25, "shipping" : [ { "address" : "江西省景德鎮" } ] } { "_id" : ObjectId("5e95af8c4ef6faf974b4a6c9"), "orderNo" : "1000611743", "price" : 19.14, "shipping" : [ { "address" : "廣東省廣州市" } ] } { "_id" : ObjectId("5e95af8c4ef6faf974b4a6ca"), "orderNo" : "1000773917", "price" : 31.5, "shipping" : [ { "address" : "北京市朝陽區" } ] } { "_id" : ObjectId("5e95af8c4ef6faf974b4a6cb"), "orderNo" : "1000879146", "price" : 76.16, "shipping" : [ { "address" : "吉林省松原市" } ] } { "_id" : ObjectId("5e95af8c4ef6faf974b4a6cc"), "orderNo" : "1000945977", "price" : 93.98, "shipping" : [ { "address" : "遼寧省沈陽市" } ] }
可以看到,mongodb不是像SQL那樣把連接的表當成列列出,而是把連接結果放在數組裡面,這很符合Mongodb文檔型結構。
2. 修改視圖
假設現在需要增加一個數量的欄位
db.runCommand({ collMod: "orderInfo", viewOn: "order", pipeline: [ { $match: { "orderTime": { $gte: ISODate("2020-04-13T16:00:00.000Z") } } }, { $sort: { "price": -1 } }, { $limit: 10 }, //增加qty { $project: { _id: 0, orderNo: 1, price: 1, qty: 1, orderTime: 1 } } ] })
當然,也可以刪除視圖,重新用db.createView()創建視圖
3. 刪除視圖
db.orderInfo.drop();
索引
概述
Indexes support the efficient execution of queries in MongoDB. Without indexes, MongoDB must perform a collection scan, i.e. scan every document in a collection, to select those documents that match the query statement. If an appropriate index exists for a query, MongoDB can use the index to limit the number of documents it must inspect.
索引能提供高效的查詢,沒有索引的查詢,mongole執行集合掃描,相當於SQL SERVER的全表掃描,掃描每一個文檔。
數據存在存儲介質上,大多數情況是為了查詢,查詢的快慢直接影響用戶體驗,mongodb索引也是空間換時間,添加索引,CUD操作都會導致索引重新生成,影響速度。
1. 準備工作
1.1 準備200W條數據
var orderNo = 100 * 10000; for (var i = 0; i < 100; i++) { //分批次插入,每次20000條 var orders = new Array(); for (var j = 0; j < 20000; j++) { var orderNo = orderNo++; orders[j] = { orderNo: orderNo, userId: i + j, price: Math.round(Math.random() * 10000) / 100, qty: Math.floor(Math.random() * 10) + 1, orderTime: new Date(new Date().setSeconds(Math.floor(Math.random() * 10000))) }; } //不需寫入確認 db.order.insert(orders, { writeConcern: { w: 0 } }); }
1.2 mongodb的查詢計劃
db.collection.explain().<method(...)>
一般使用執行統計模式,例如
db.order.explain("executionStats").find({orderNo:1000000})
返回的executionStats對象欄位說明
部分欄位說明
欄位 | 說明 |
---|---|
executionSuccess | 是否執行成功 |
nReturned | 返回匹配文檔數量 |
executionTimeMillis | 執行時間,單位:毫秒 |
totalKeysExamined | 索引檢索數目 |
totalDocsExamined | 文檔檢索數目 |
查看未加索引前查詢計劃
db.order.explain("executionStats").find({orderNo:1000000})
截取部分返回結果,可以看出
- executionTimeMillis : 用時1437毫秒
- totalDocsExamined : 掃描文檔200W
- executionStages.stage : 集合掃描
"executionStats" : { "executionSuccess" : true, "nReturned" : 1, "executionTimeMillis" : 1437, "totalKeysExamined" : 0, "totalDocsExamined" : 2000000, "executionStages" : { "stage" : "COLLSCAN",
1.3 查看當前集合統計信息
db.order.stats()
截取部分信息,可以看出現在存儲文件大小大概為72M
{ "ns" : "mongo.order", "size" : 204000000, "count" : 2000000, "avgObjSize" : 102, "storageSize" : 74473472,
2. 創建索引
db.order.createIndex({ orderNo: 1 }, { name: "ix_orderNo" })
索引名稱不是必須,若不指定,按 欄位名稱_排序類型組合自動生成,索引名稱一旦創建不能修改,若要修改,只能刪除索引重新生成索引,建議還是建索引的時候就把索引名稱設置好。
2.1 執行查詢計劃
db.order.explain("executionStats").find({orderNo:1000000})
截取部分結果,直觀就可以感覺查詢速度有了質的提升,再看查詢計劃更加驚訝
- nReturned : 匹配到1個文檔
- executionTimeMillis : 0,呃。。
- totalKeysExamined : 總共檢索了1個索引
- totalDocsExamined : 總共檢索了1個文檔
- executionStages.stage : FETCH,根據索引去檢索指定文檔,像SQL的Index Seek
"executionStats" : { "executionSuccess" : true, "nReturned" : 1, "executionTimeMillis" : 0, "totalKeysExamined" : 1, "totalDocsExamined" : 1, "executionStages" : { "stage" : "FETCH"
這裡只介紹最簡單的單個欄位索引,mongodb還有很多索引
- 複合索引(Compound Indexes):對多個欄位做索引
- 多鍵索引(Multikey Indexes): 一個欄位多個值做索引,通常是數組
- 全文索引(Text Indexes): 對文本檢索,可以對欄位設置不同權重
- 通配符索引(Wildcard Indexes):可以將對象的所有/指定的值做索引
- 更多
參考文章
轉發請標明出處:https://www.cnblogs.com/WilsonPan/p/12704474.html