HyperBoot_S32K116 is a UART bootloader developed for my S32K116 EVB hardware. so that the application can be reflashed by UART. ...
瞭解更多關於bootloader 的C語言實現,請加我QQ: 1273623966 (驗證信息請填 bootloader),歡迎咨詢或定製bootloader(線上升級程式)。
到目前為止,“自己用C語言寫 xxx serial bootloader"已經有7篇博文了,7篇博文,7款不同的MCU。今天給大家介紹第8款MCU的串口bootloader, 也就是NXP S32K116 serial boot-loader。 NXP S32K116 是ARM Cortex-M0 內核的32-bit MCU。 有豐富的外設,卓越的性能以及成熟的工具鏈。Processor Expert更是非常不錯,我的這個bootloader 的底層驅動都是用Processor Expert自動生成的。我只需要寫中間層和bootloader應用層的代碼。看完S32Kxxx datasheet和S32Kxxx reference manual,才開始寫bootloader,整個實現過程除了"bootloader jumping to application"卡了一段時間,一切都非常順利。Processor Expert確實可以節省不少時間。但NXP S32Kxxx 開發環境也有不足的地方,比如IDE S32DS (S32 design studio) 非常慢,電腦配置不高的話容易卡死。還有就是S32DS 不支持simulator debug。 一定要有硬體板才可以debug.
Bootloader 是獨立的一個程式,和Application分別存儲在ROM中不同的區間,不能有重疊。我的S32K116 bootloader 是放置在頭部,區間範圍為:0x00000000~0x00003FFF. Application的區間範圍為:0x00004000~0x0001FFFF. 為此分別對Bootloader 和Application的linker script做了一下改動。
Bootloader linker script 的改動如下:
MEMORY { /* Flash */ m_interrupts (RX) : ORIGIN = 0x00000000, LENGTH = 0x000000C0 m_flash_config (RX) : ORIGIN = 0x00000400, LENGTH = 0x00000010 m_text (RX) : ORIGIN = 0x00000410, LENGTH = 0x00003BF0 /* SRAM_L */ /* SRAM_U */ m_data (RW) : ORIGIN = 0x20000000, LENGTH = 0x000020C0 m_data_2 (RW) : ORIGIN = 0x200020C0, LENGTH = 0x00001740 }
Application linker script 的改動如下:
MEMORY { /* Flash */ m_interrupts (RX) : ORIGIN = 0x00004000, LENGTH = 0x000000C0 m_flash_config (RX) : ORIGIN = 0x00004400, LENGTH = 0x00000010 m_text (RX) : ORIGIN = 0x00004410, LENGTH = 0x0001BBF0 /* SRAM_L */ m_custom (RW) : ORIGIN = 0x1FFFFC00, LENGTH = 0x00000400 /* SRAM_U */ m_data (RW) : ORIGIN = 0x20000000, LENGTH = 0x000020C0 m_data_2 (RW) : ORIGIN = 0x200020C0, LENGTH = 0x00001740 }
Bootloader實現Application的更新需要上位機的協助,上位機一般是PC端的host 軟體工具。我的S32K116 bootloader 使用的上位機是HyperTerminal. HyperTerminal 可以建立串口連接,傳輸Application 的Hex文件。並可以配置傳輸方式為每發送一行delay 50ms, 這樣可以預留時間讓bootloader處理數據完成燒寫。使用HyperTerminal可以省掉開發專門的上位機時間,但是由於傳送方式是純文本發送,沒有使用協議,沒有應答機制。某種意義上講是不可靠的。並且速度慢,一般不可以用於量產產品,只能用於學習或內部人員使用。
Bootloader程式是MCU的程式,MCU一上電就進入Bootloader。Bootloader程式先完成CLOCK, PIN, UART 初始化,然後就運行一個Bootloader狀態機,狀態機如下所示:
switch (bootState) { case BOOT_HANDSHAKE: mbootStatus = M_Bootloader_Handshake(); if (mbootStatus == BT_OK) { bootState = BOOT_INIT; } else if (mbootStatus == BT_HS_TIMEOUT) { mbootStatus = BT_DONE; bootState = BOOT_JUMPTO_APP; } break; case BOOT_INIT: LPUART_DRV_SendDataPolling(INST_LPUART1,(uint8_t*)bootInitMsg,strlen((char*)bootInitMsg)); mbootStatus = M_Bootloader_Init(); if (mbootStatus == BT_OK) { LPUART_DRV_SendDataPolling(INST_LPUART1,(uint8_t*)bootJobDoneMsg,strlen((char*)bootJobDoneMsg)); bootState = BOOT_ERASE; } break; case BOOT_ERASE: LPUART_DRV_SendDataPolling(INST_LPUART1,(uint8_t*)bootEraseMsg,strlen((char*)bootEraseMsg)); mbootStatus = M_Bootloader_Erase(); if (mbootStatus == BT_OK) { LPUART_DRV_SendDataPolling(INST_LPUART1,(uint8_t*)bootJobDoneMsg,strlen((char*)bootJobDoneMsg)); bootState = BOOT_RECEIVE; LPUART_DRV_SendDataPolling(INST_LPUART1,(uint8_t*)bootPrgmMsg,strlen((char*)bootPrgmMsg)); } break; case BOOT_RECEIVE: mbootStatus = M_Bootloader_Receive(); if (mbootStatus == BT_OK) { LPUART_DRV_SendDataPolling(INST_LPUART1,(uint8_t*)bootFbHdrMsg,strlen((char*)bootFbHdrMsg)); LPUART_DRV_SendDataPolling(INST_LPUART1,(uint8_t*)lineRcdBuf,LINE_RECORD_BUF_SIZE); bootState = BOOT_PROGRAM; } break; case BOOT_PROGRAM: mbootStatus = M_Bootloader_Write(); if (mbootStatus == BT_BUSY) { bootState = BOOT_RECEIVE; } else if (mbootStatus == BT_OK) { bootState = BOOT_PREJUMP; } break; case BOOT_PREJUMP: mbootStatus = Prejump_To_Application(); if (mbootStatus == BT_OK) { bootState = BOOT_JUMPTO_APP; LPUART_DRV_SendDataPolling(INST_LPUART1,(uint8_t*)bootPrgmDoneMsg,strlen((char*)bootPrgmDoneMsg)); } break; case BOOT_JUMPTO_APP: mbootStatus = BT_DONE; //LPUART_DRV_Deinit(INST_LPUART1); //Jump_To_Application(*((uint32_t*)APP_START_ADDRESS),*((uint32_t*)APP_JUMP_ADDRESS)); break; default: break; }
總共7個狀態:BOOT_HANDSHAKE,BOOT_INIT,BOOT_ERASE,BOOT_RECEIVE,BOOT_PROGRAM,BOOT_PREJUMP,BOOT_JUMPTO_APP。
BOOT_HANDSHAKE:初始狀態,數秒6秒,收到更新請求就切換狀態為BOOT_INIT,超時就切換狀態為BOOT_JUMPTO_APP,出錯就重啟。 BOOT_INIT: 初始化flash, 成功就切換狀態為BOOT_ERASE,出錯就重啟。 BOOT_ERASE:擦除flash的Application區間,成功就切換狀態為BOOT_RECEIVE,出錯就重啟。 BOOT_RECEIVE:接收Hex數據,每成功接收一行數據,就切換狀態為BOOT_PROGRAM,出錯就重啟。 BOOT_PROGRAM:解析數據,數據ready就完成燒寫,如果數據是最後一行數據,就切換狀態為BOOT_PREJUMP,否則切回BOOT_RECEIVE,出錯就重啟。 BOOT_PREJUMP: 檢查數據並處理未處理的數據,成功則切換狀態為BOOT_JUMPTO_APP,出錯就重啟。 BOOT_JUMPTO_APP: 設置Application中斷向量,設置Application的Stack首地址。跳轉到Application Reset 向量地址。
Jump_To_Application這個函數功能很簡單,卻花了很多時間,Application已經燒寫完成,始終無法跳轉過去,包括NXP官網上bootloader常式的跳轉方法也不行,後來經過不斷試錯,總算成功了,最終實現如下:
void Jump_To_Application(uint32_t userSP) { void (*entry)(void); uint32_t pc; if(userSP == 0xFFFFFFFF) { return; } else { /* Set up stack pointer */ __asm("msr msp, r0"); __asm("msr psp, r0"); /* Relocate vector table */ S32_SCB->VTOR = (uint32_t)APP_START_ADDRESS; /* Jump to application PC */ pc = *((volatile uint32_t *)(APP_START_ADDRESS + 4)); entry = (void (*)(void))pc; entry(); } }
Bootloader 的開發環境:
IDE: S32DS
Compiler: S32DS 自帶的gcc
Hardware: S32K116 EVB
SDK: S32DS/S32SDK_S32K116_EAR_1.8.7