旋轉傻烏龜——幾何變換實踐

来源:https://www.cnblogs.com/kensporger/archive/2020/01/28/12236869.html
-Advertisement-
Play Games

這兩天新型肺炎病例是指數上升啊!呆在家裡沒事幹,正好想起之前FPGA大賽上有個老哥做了一個圖像旋轉作品,還在群里發了技術報告。無聊之下就打算學習一下,然後就順便把平移、旋轉、縮放這些幾何變換都看了,最後決定把這三個綜合起來寫個“旋轉傻烏龜”的動畫。先是用OpenCV內置函數實現了下,感覺不過癮,又自 ...


這兩天新型肺炎病例是指數上升啊!呆在家裡沒事幹,正好想起之前FPGA大賽上有個老哥做了一個圖像旋轉作品,還在群里發了技術報告。無聊之下就打算學習一下,然後就順便把平移、旋轉、縮放這些幾何變換都看了,最後決定把這三個綜合起來寫個“旋轉傻烏龜”的動畫。先是用OpenCV內置函數實現了下,感覺不過癮,又自己寫了一遍。老規矩,還是把學過的、做過的東西記錄下來!

旋轉傻烏龜,效果就是將一隻烏龜在視窗中同時進行平移、縮放和旋轉,由於最後看起來樣子比較傻,因此得名“旋轉傻烏龜”。

效果視頻:

                

 

 

 

一、幾何變換的矩陣表示

 


 

1.1 平移的表示

 

   

上圖中的三種表示方法第二種是OpenCV要求的方式,但第一種形式表示起來更具統一性,因此我更傾向於第一種。但無論哪一種,都能展開成第三種的形式。第三種非常直觀的反映了平移,只是需要註意正負號的選取——在編程中,圖像一般以左上角為(0,0)點。這也就是說,建立坐標系的時候,X軸以右正方向,Y軸以下為正方向。以上矩陣表示將圖像向右平移x0,向下平移y0,也可以認為是將坐標系向左平移x0,向上平移y0。平移可以形象地表示如下:

    

 

 

 

1.2 以左上角為定點縮放的表示

 

    

縮放最容易理解,就是將橫縱坐標乘以縮放比例。由於我們以左上角為坐標系原點,所以左上角點的位置並不會變化。

 

 

 

1.3 以左上角點為中心旋轉的表示

 

  

在本文中,規定順時針方向旋轉,θ為正;逆時針旋轉,θ為負。旋轉前後的坐標關係推導也不難,如下圖所示,旋轉前先求出旋轉半徑L,旋轉後根據L求出坐標。

 

為了之後表述的簡潔,我們將這三節中的矩陣分別用特定符號簡記:

    

 

 

 

1.4 以任一點為中心旋轉的表示

 

有了以上的基礎,我們就可以研究更加複雜的變換。例如我們想以任一點(x0,y0)為中心旋轉,而我們推導的R(θ)只適用於以坐標系原點為中心旋轉。因此,我們可以將圖像向上平移x0,向左平移y0,使(x0,y0)點平移到坐標系原點;然後再旋轉,旋轉完後再向下平移x0,向右平移y0回到原來位置,這一過程可用三個基礎基礎矩陣表示成如下形式,註意三個矩陣順序不能調換。

 

 

 

1.5 以任一點為定點縮放的表示

 

方法同1.4節的旋轉,可以表示為下麵形式。除此之外,還可以在此基礎上進行旋轉平移,只要在左邊依次乘上相應矩陣即可。

 

 

 

 

二、旋轉傻烏龜OpenCV函數實現

 


OpenCV提供了仿射變換函數warpAffine。在輸入參數中,M表示變換矩陣,可以是平移、旋轉和縮放矩陣等;dsize是輸入圖像的大小;flags是插值方式,一般採用預設的雙線性插值。

 

至於M的獲取,平移矩陣只能自己構造;二旋轉矩陣可以由函數getRotationMatrix2D得到。輸入參數中,center表示旋轉中心的坐標;angle為旋轉角度,逆時針為正;scale是縮放比例。可見這個函數同時包攬了旋轉和縮放的功能。

 

我的思路是,用正弦函數生成一系列軌跡點,烏龜每到達一個軌跡點,就旋轉一定角度,縮放一定比例,而軌跡點的跟蹤就是烏龜中心的平移。根據之前的說的原理,我們先讓整個圖像繞自身中心旋轉和縮放,縮放後的烏龜應該是在整個圖像的中間,為了讓它中心和軌跡重合,就使用平移變換,此時平移的距離應該是path-center。整個過程的代碼如下:

 1 import cv2
 2 import numpy as np
 3 import time
 4 
 5 img = cv2.imread('image/turtle.jpg')
 6 size = img.shape[:-1]
 7 cv2.namedWindow('img')
 8 
 9 #平移矩陣
10 def GetMoveMatrix(x,y):
11     M = np.zeros((2, 3), dtype=np.float32)
12 
13     M.itemset((0, 0), 1)
14     M.itemset((1, 1), 1)
15     M.itemset((0, 2), x)
16     M.itemset((1, 2), y)
17 
18     return M
19 
20 if __name__ == '__main__':
21 
22     # shape和坐標是顛倒的
23     center_x = size[1]/2
24     center_y = size[0]/2
25     #計時
26     start_time = time.time()
27 
28     for x in np.linspace(0,2*np.pi,100):
29         #角度、縮放
30         angle = -360*x/2/np.pi
31         scale = 0.2+0.2*np.sin(x)
32         #軌跡
33         path_x = x*50+100
34         path_y = (np.sin(x)+1)*100+100
35         #旋轉、平移矩陣
36         M1 = cv2.getRotationMatrix2D((center_x, center_y), angle, scale)
37         M2 = GetMoveMatrix(path_x-center_x,path_y-center_y)
38         #仿射變換
39         rotate = cv2.warpAffine(img,M1,size)
40         dst = cv2.warpAffine(rotate,M2,size)
41 
42         # cv2.imshow('img',dst)
43         # cv2.waitKey(1)
44     #花費125ms
45     print(time.time()-start_time)

 

 

 

 

三、旋轉傻烏龜自實現

 


 

 這個自己用Python實現的話,性能就相當重要了,尤其是雙線性插值,如果不優化的話,慢得簡直可以讓你懷疑人生。比如,一般的是用兩個for迴圈迭代,代碼如下。在這個項目里,這個函數執行一次需要花費1.4s的時間。所以不優化的話,這隻烏龜真的是名副其實了!

 1 def InterLinearMap(img,size,mapx,mapy):
 2 
 3     dst = np.zeros(img.shape,dtype=np.uint8)
 4 
 5     for row in range(size[0]):
 6         for col in range(size[1]):
 7 
 8             intx = np.int32(mapx.item(row,col))
 9             inty = np.int32(mapy.item(row,col))
10             partx = mapx.item(row,col)-intx
11             party = mapy.item(row,col)-inty
12             resx = 1-partx
13             resy = 1-party
14 
15             if party==0 and partx==0:
16                 result=img[inty,intx]
17             else:
18                 result = ((img[inty,intx]*resx+img[inty,intx+1]*partx)*resy
19                           +(img[inty+1,intx]*resx+img[inty+1,intx+1]*partx)*party)
20 
21             dst[row,col]=np.uint8(result+0.5)
22 
23     return dst

 

 

那怎麼辦?網上有一些優化的方法,主要是將浮點運算轉成整數運算,這個方法對於FPGA這樣的邏輯器件最適合不過了——但別忘了,我現在用的是Python,整數運算實際上也會被轉成浮點運算,所以這個方法顯然不適用。我採用的優化是進行矩陣化,據我所知,很多編程語言只要是支持矩陣運算的,其運算都是優化過的。對於雙線性插值和仿射變換,運用矩陣也是很合適,只是寫起來會有點抽象。。。

 

首先,先把生成變換矩陣的函數寫出來,代碼如下。要註意numpy的三角函數接受的參數是弧度制。

 1 #縮放矩陣
 2 def GetResizeMatrix(scalex,scaley):
 3     M = np.zeros((3,3),dtype=np.float32)
 4 
 5     M.itemset((0,0),scalex)
 6     M.itemset((1,1),scaley)
 7     M.itemset((2,2),1)
 8 
 9     return M
10 #平移矩陣
11 def GetMoveMatrix(x,y):
12     M = np.zeros((3, 3), dtype=np.float32)
13 
14     M.itemset((0, 0), 1)
15     M.itemset((1, 1), 1)
16     M.itemset((2, 2), 1)
17     M.itemset((0, 2), x)
18     M.itemset((1, 2), y)
19 
20     return M
21 #旋轉矩陣
22 def GetRotationMatrix(angle):
23     M = np.zeros((3, 3), dtype=np.float32)
24 
25     M.itemset((0, 0), np.cos(angle))
26     M.itemset((0, 1), -np.sin(angle))
27     M.itemset((1, 0), np.sin(angle))
28     M.itemset((1, 1), np.cos(angle))
29     M.itemset((2, 2), 1)
30 
31     return M

 

接下來寫仿射變換函數,輸入參數為圖片數據、變換矩陣和輸入圖片的大小。這裡應該要有逆向思維——現在我要得到變換後的圖片,就是要求各坐標位置上的色彩,而色彩取樣自變換前圖像上的一點(這點的坐標可能不是整數),也就是說我們要將變換後的坐標映射到變換前的坐標。再來看之前的公式(下圖左,為了方便,將變換矩陣合成為一個矩陣A),現在我們已知的是左邊部分,而要求的映射是等式右邊的XY,因此我們將A拿到左邊,得到另一個公式(下圖右),並依據這個公式,寫出仿射變換函數。

       

 1 def WarpAffine(img,Mat,size):
 2 
 3     rows = size[0]
 4     cols = size[1]
 5     #生成矩陣[X Y 1]
 6     ones = np.ones((rows, cols), dtype=np.float32)
 7     #gridx/gridy -> shape(rows,cols)
 8     gridx,gridy= np.meshgrid(np.arange(0, cols),np.arange(0, rows))
 9     #dst -> shape(3,rows,cols)
10     dst = np.stack((gridx, gridy, ones))
11 
12     #求逆矩陣 M -> shape(3,3)
13     Mat = np.linalg.inv(Mat)
14     #獲得矩陣[x,y,1] -> shape(3,rows,cols)
15     src = np.tensordot(Mat,dst,axes=[[-1],[0]])
16     
17     #mapx/mapy -> shape(rows,cols)
18     mapx = src[0]#坐標非整數
19     mapy = src[1]#坐標非整數
20     #仿射出界的設為原點
21     flags = (mapy > rows - 2) + (mapy < 0) + (mapx > cols - 2) + (mapx < 0)
22     mapy[flags] = 0
23     mapx[flags] = 0
24     #雙線性插值
25 
26     result = InterLinearMap(img, mapx, mapy)
27 
28     return result

 

再解決雙線性插值,關於該演算法的原理挺簡單的,讀者可以網上查找(提一點,理解雙線性插值時可以想象3D模型,Z軸為灰度值)。對於該函數,借鑒一下remap函數,輸入參數設兩個map,分別表示x,y的映射。map的大小跟圖片大小相同,也就是說,一共有rows*cols點需要插值,除了用兩個for迭代,我們也可以將rows和cols作為矩陣的兩個額外維度,表示樣本數。計算的話,利用矩陣的點乘代替凌亂的長算式,顯得很簡潔,公式如下:

 

 代碼如下,經測試,執行一次該函數,花費時間為45ms,這要比原來的1.4s快多了(實在不知道該怎麼進一步優化了,mxy、img下表索引、求和各花了15ms)

def InterLinearMap(img,mapx,mapy):

    #(rows,cols)
    inty = np.int32(mapy)
    intx = np.int32(mapx)
    nxty = 1+inty
    nxtx = 1+intx
    #(rows,cols)
    party = mapy - inty
    partx = mapx - intx
    resy = 1-party
    resx = 1-partx

    #(4,rows,cols)
    mxy = np.stack((resy*partx,resy*resx,partx*party, resx*party))
    mxy = np.expand_dims(mxy,axis=-1)

    #(4,rows,cols,3)
    mf = np.stack((img[inty,nxtx],img[inty,intx],img[nxty,nxtx],img[nxty,intx]))

    #res -> shape(rows,cols,3)
    res = np.sum(mxy*mf,axis=0)
    res = np.uint8(res+0.5)

    return res

 

 

綜上,給出完整代碼:

import cv2
import numpy as np

img = cv2.imread('image/turtle.jpg')
size = img.shape[:-1]
cv2.namedWindow('img')

#縮放矩陣
def GetResizeMatrix(scalex,scaley):
    M = np.zeros((3,3),dtype=np.float32)

    M.itemset((0,0),scalex)
    M.itemset((1,1),scaley)
    M.itemset((2,2),1)

    return M
#平移矩陣
def GetMoveMatrix(x,y):
    M = np.zeros((3, 3), dtype=np.float32)

    M.itemset((0, 0), 1)
    M.itemset((1, 1), 1)
    M.itemset((2, 2), 1)
    M.itemset((0, 2), x)
    M.itemset((1, 2), y)

    return M
#旋轉矩陣
def GetRotationMatrix(angle):
    M = np.zeros((3, 3), dtype=np.float32)

    M.itemset((0, 0), np.cos(angle))
    M.itemset((0, 1), -np.sin(angle))
    M.itemset((1, 0), np.sin(angle))
    M.itemset((1, 1), np.cos(angle))
    M.itemset((2, 2), 1)

    return M

def InterLinearMap(img,mapx,mapy):

    #(rows,cols)
    inty = np.int32(mapy)
    intx = np.int32(mapx)
    nxty = 1+inty
    nxtx = 1+intx
    #(rows,cols)
    party = mapy - inty
    partx = mapx - intx
    resy = 1-party
    resx = 1-partx

    #(4,rows,cols)
    mxy = np.stack((resy*partx,resy*resx,partx*party, resx*party))
    mxy = np.expand_dims(mxy,axis=-1)

    #(4,rows,cols,3)
    mf = np.stack((img[inty,nxtx],img[inty,intx],img[nxty,nxtx],img[nxty,intx]))

    #res -> shape(rows,cols,3)
    res = np.sum(mxy*mf,axis=0)
    res = np.uint8(res+0.5)

    return res



def WarpAffine(img,Mat,size):

    rows = size[0]
    cols = size[1]
    #生成矩陣[X Y 1]
    ones = np.ones((rows, cols), dtype=np.float32)
    #gridx/gridy -> shape(rows,cols)
    gridx,gridy= np.meshgrid(np.arange(0, cols),np.arange(0, rows))
    #dst -> shape(3,rows,cols)
    dst = np.stack((gridx, gridy, ones))

    #求逆矩陣 M -> shape(3,3)
    Mat = np.linalg.inv(Mat)
    #獲得矩陣[x,y,1] -> shape(3,rows,cols)
    src = np.tensordot(Mat,dst,axes=[[-1],[0]])
    
    #mapx/mapy -> shape(rows,cols)
    mapx = src[0]#坐標非整數
    mapy = src[1]#坐標非整數
    #仿射出界的設為原點
    flags = (mapy > rows - 2) + (mapy < 0) + (mapx > cols - 2) + (mapx < 0)
    mapy[flags] = 0
    mapx[flags] = 0
    #雙線性插值

    result = InterLinearMap(img, mapx, mapy)

    return result



if __name__ == '__main__':

    center_x = size[1]/2
    center_y = size[0]/2

    for x in np.linspace(0,2*np.pi,100):

        angle = 360*x/2/np.pi
        scale = 0.2+0.2*np.sin(x)

        path_x = x*50+100
        path_y = (np.sin(x)+1)*100+100

        M = GetMoveMatrix(path_x,path_y)@GetRotationMatrix(x)\
            @GetResizeMatrix(scale,scale)@GetMoveMatrix(-center_x,-center_y)

        dst = WarpAffine(img,M,size)
        cv2.imshow('img',dst)
        cv2.waitKey(1)

 


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 本章內容參考官網即可,不做詳細說明,實踐出真知! starUMl規則主要是在模型設計的約束條件 https://docs.staruml.io/user-guide/validation-rules 快捷鍵 https://docs.staruml.io/user-guide/keyboard-sh ...
  • 這章比較簡單,主要是對視圖元素的樣式調整 主要是在視圖元素右下角設置,可以修改視圖元素的相關樣式 字體樣式 顏色 鏈接線樣式 對齊樣式 Stereotype Display-視圖元素的樣式屬性 菜單Format | Stereotype Display | [StereotypeDisplayKin ...
  • Diagrams(圖)可以理解為畫布 1:創建圖 在右側的Model Explorer管理界面的第一個節點右鍵,或者選擇菜單中Model | Add Diagram | [DiagramType]都可以創建 2:Delete Diagram 選擇後滑鼠右鍵或菜單Edit中 3:Open Diagra ...
  • 1:創建空的項目 創建項目可以按Ctrl+N或選擇菜單File| New,StarUML安裝打開後預設會有個空項目結構。 2:創建模板項目 可以通過選擇模板來啟動建模項目(會根據模板創建項目結構)。 要使用模板啟動項目,請從File| | New From TemplateName中選擇。 Star ...
  • 為什麼用StarUML UML建模工具比較常見的PowerDesigner ROSE StarUML starUML-開源免費(1-2百M),PowerDesigner-精細和一體化(6-7百M),ROSE-大而全(3-4百M) 看個人設計目的,starUML(http://staruml.io/) ...
  • 集合就像是一個購物車,可以將購買的所有商品的存放在一個統一的購物車中集合的概念現實生活: 很多的事物湊在一起數學中的集合: 具有共同屬性的事物的總體是一種工具類,是一種容器,裡面可以存儲任意數量的相同屬性的類。集合的作用在類的內部對數據進行組織簡單快速的搜索大數量的條目有的集合口,提供了一系列排列有... ...
  • 通過getchar來取代cin不斷對緩衝區的操作,加快速度 調用 即可 ...
  • 英文 | "Python Tips and Trick, You Haven't Already Seen" 原作 | Martin Heinz ( "https://martinheinz.dev" ) 譯者 | 豌豆花下貓 聲明 :本文獲得原作者授權翻譯,轉載請保留原文出處,請勿用於商業或非法用 ...
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...