pandas的合併、連接、去重、替換

来源:https://www.cnblogs.com/xshan/archive/2019/05/05/10816567.html
-Advertisement-
Play Games

1 import pandas as pd 2 import numpy as np 3 4 # merge合併 ,類似於Excel中的vlookup 5 6 df1 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], 7 'A': ['A0', 'A1... ...


  1 import pandas as pd
  2 import numpy as np
  3 
  4 # merge合併 ,類似於Excel中的vlookup
  5 
  6 df1 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
  7                     'A': ['A0', 'A1', 'A2', 'A3'],
  8                     'B': ['B0', 'B1', 'B2', 'B3']})
  9 df2 = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
 10                     'C': ['C0', 'C1', 'C2', 'C3'],
 11                     'D': ['D0', 'D1', 'D2', 'D3']})
 12 df3 = pd.DataFrame({'key1': ['K0', 'K0', 'K2', 'K3'],
 13                     'key2': ['K0', 'K1', 'K0', 'K1'],
 14                     'A': ['A0', 'A1', 'A2', 'A3'],
 15                     'B': ['B0', 'B1', 'B2', 'B3']})
 16 df4 = pd.DataFrame({'key1': ['K0', 'K0', 'K2', 'K3'],
 17                     'key2': ['K0', 'K0', 'K0', 'K0'],
 18                     'C': ['C0', 'C1', 'C2', 'C3'],
 19                     'D': ['D0', 'D1', 'D2', 'D3']})
 20 print(pd.merge(df1,df2,on='key'))
 21 # 第一個DataFrame為拼接後左邊的
 22 # 第二個DataFrame為拼接後右邊的
 23 # on 為參考鍵
 24 '''
 25   key   A   B   C   D
 26 0  K0  A0  B0  C0  D0
 27 1  K1  A1  B1  C1  D1
 28 2  K2  A2  B2  C2  D2
 29 3  K3  A3  B3  C3  D3
 30 '''
 31 # 多個鍵連接
 32 print(pd.merge(df3, df4, on=['key1', 'key2']))
 33 # 當兩個DataFrame中的key1和key2都相同時,才會連,否則不連
 34 '''
 35   key1 key2   A   B   C   D
 36 0   K0   K0  A0  B0  C0  D0
 37 1   K0   K0  A0  B0  C1  D1
 38 2   K2   K0  A2  B2  C2  D2
 39 '''
 40 # 參數how  , 合併方式
 41 # 預設,取交集
 42 print(pd.merge(df3, df4, on=['key1', 'key2'], how='inner'))
 43 print('-' * 8)
 44 '''
 45   key1 key2   A   B   C   D
 46 0   K0   K0  A0  B0  C0  D0
 47 1   K0   K0  A0  B0  C1  D1
 48 2   K2   K0  A2  B2  C2  D2
 49 --------
 50 '''
 51 # 取並集,outer,數據缺失範圍NaN
 52 print(pd.merge(df3, df4, on=['key1', 'key2'], how='outer'))
 53 print('-' * 8)
 54 '''
 55   key1 key2    A    B    C    D
 56 0   K0   K0   A0   B0   C0   D0
 57 1   K0   K0   A0   B0   C1   D1
 58 2   K0   K1   A1   B1  NaN  NaN
 59 3   K2   K0   A2   B2   C2   D2
 60 4   K3   K1   A3   B3  NaN  NaN
 61 5   K3   K0  NaN  NaN   C3   D3
 62 --------
 63 '''
 64 # 參照df3為參考合併,數據缺失範圍NaN
 65 print(pd.merge(df3, df4, on=['key1', 'key2'], how='left'))
 66 print('-' * 8)
 67 '''
 68   key1 key2   A   B    C    D
 69 0   K0   K0  A0  B0   C0   D0
 70 1   K0   K0  A0  B0   C1   D1
 71 2   K0   K1  A1  B1  NaN  NaN
 72 3   K2   K0  A2  B2   C2   D2
 73 4   K3   K1  A3  B3  NaN  NaN
 74 --------
 75 '''
 76 # 參照df4為參考合併,數據缺失範圍NaN
 77 print(pd.merge(df3, df4, on=['key1', 'key2'], how='right'))
 78 print('-' * 8)
 79 '''
 80   key1 key2    A    B   C   D
 81 0   K0   K0   A0   B0  C0  D0
 82 1   K0   K0   A0   B0  C1  D1
 83 2   K2   K0   A2   B2  C2  D2
 84 3   K3   K0  NaN  NaN  C3  D3
 85 --------
 86 '''
 87 # 參數left_on,right_on,left_index, right_index  ,當鍵不為一個列時,可以單獨設置左鍵與右鍵
 88 df5 = pd.DataFrame({'lkey': list('bbacaab'),
 89                     'data1': range(7)})
 90 df6 = pd.DataFrame({'rkey': list('abd'),
 91                     'date2': range(3)})
 92 print(df5)
 93 print(df6)
 94 print(pd.merge(df5,df6,left_on='lkey',right_on='rkey'))
 95 '''
 96   lkey  data1
 97 0    b      0
 98 1    b      1
 99 2    a      2
100 3    c      3
101 4    a      4
102 5    a      5
103 6    b      6
104   rkey  date2
105 0    a      0
106 1    b      1
107 2    d      2
108   lkey  data1 rkey  date2
109 0    b      0    b      1
110 1    b      1    b      1
111 2    b      6    b      1
112 3    a      2    a      0
113 4    a      4    a      0
114 5    a      5    a      0
115 '''
116 
117 # concat() 連接,預設axis=0  行+行,當axis=1時,列+列  成為Dataframe
118 s1 = pd.Series([2, 3, 4])
119 s2 = pd.Series([1, 2, 3])
120 print(pd.concat([s1, s2]))
121 '''
122 0    2
123 1    3
124 2    4
125 0    1
126 1    2
127 2    3
128 dtype: int64
129 '''
130 print(pd.concat([s1,s2],axis=1))
131 '''
132    0  1
133 0  2  1
134 1  3  2
135 2  4  3
136 '''
137 snew = pd.concat([s1, s2], axis=1)
138 snew.reset_index(inplace=True)
139 print(snew)
140 '''
141    index  0  1
142 0      0  2  1
143 1      1  3  2
144 2      2  4  3
145 '''
146 snew2 = pd.concat([s1, s2], axis=1)
147 snew2.reset_index(inplace=True, drop=True)
148 print(snew2)
149 '''
150    0  1
151 0  2  1
152 1  3  2
153 2  4  3
154 '''
155 
156 # 去重  .duplicated()
157 s3 = pd.Series([1, 2, 2, 4, 4, 6, 7, 6, 87])
158 # 判斷是否重覆
159 print(s3.duplicated())
160 '''
161 0    False
162 1    False
163 2     True
164 3    False
165 4     True
166 5    False
167 6    False
168 7     True
169 8    False
170 dtype: bool
171 '''
172 # 取出重覆的值
173 s4 = s3[s3.duplicated()]
174 print(s4)
175 # 取出唯一的元素
176 s5 = s3[s3.duplicated() == False]
177 print(s5)
178 '''
179 0     1
180 1     2
181 3     4
182 5     6
183 6     7
184 8    87
185 dtype: int64
186 '''
187 s5 = s3.drop_duplicates()
188 # 可以通過設置參數:inplace控制是否替換原先的值
189 print(s5)
190 '''
191 0     1
192 1     2
193 3     4
194 5     6
195 6     7
196 8    87
197 dtype: int64
198 '''
199 df7 = pd.DataFrame({'key1':['a','a',3,4,3],
200                     'key2':['a','a','b','b',5]})
201 print(df7.duplicated())
202 # 按行檢測,第二次出現時,返回True
203 '''
204 0     1
205 1     2
206 3     4
207 5     6
208 6     7
209 8    87
210 dtype: int64
211 '''
212 # 今查看key2列
213 print(df7['key2'].duplicated())
214 '''
215 0    False
216 1     True
217 2    False
218 3     True
219 4    False
220 Name: key2, dtype: bool
221 '''
222 # 直接去重
223 print(df7.drop_duplicates())
224 '''
225   key1 key2
226 0    a    a
227 2    3    b
228 3    4    b
229 4    3    5
230 '''
231 print(df7['key2'].drop_duplicates())
232 '''
233 0    a
234 2    b
235 4    5
236 Name: key2, dtype: object
237 '''
238 
239 # 替換  .replace()
240 s6 = pd.Series(list('askjdghs'))
241 # 一次性替換一個值
242 # print(s6.replace('s','dsd'))
243 '''
244 0      a
245 1    dsd
246 2      k
247 3      j
248 4      d
249 5      g
250 6      h
251 7    dsd
252 dtype: object
253 '''
254 # 一次性替換多個值
255 print(s6.replace(['a','s'],np.nan))
256 '''
257 0    NaN
258 1    NaN
259 2      k
260 3      j
261 4      d
262 5      g
263 6      h
264 7    NaN
265 dtype: object
266 '''
267 # 通過字典的形式替換值
268 print(s6.replace({'a':np.nan}))
269 '''
270 0    NaN
271 1      s
272 2      k
273 3      j
274 4      d
275 5      g
276 6      h
277 7      s
278 dtype: object
279 
280 '''

 


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 一、開發環境 1、windows 7 企業版 2、Eclipse IDE for Enterprise Java Developers Version: 2019-03 (4.11.0) 3、JDK 1.8 4、Maven 3.5.2 5、MariaDB 6、Tomcat 8.5 二、基礎配置 1、 ...
  • Python基礎數據類型:字典dict 01 內容大綱 字典的初識 字典的使用(增刪改查) 字典的嵌套 02 具體內容 字典的初識: why: 列表可以存儲大量的數據,數據之間的關聯性不強 ['太白', 18, '男', '大壯', 3, '男'] 列表的查詢速度比較慢。 what:容器型數據類型: ...
  • 建議先瞭解為什麼項目要使用 MQ 消息隊列,MQ 消息隊列有什麼優點,如果在業務邏輯上沒有此種需求,建議不要使用中間件。中間件對系統的性能做優化的同時,同時增加了系統的複雜性也維護難易度;其次,需要瞭解各種常見的 MQ 消息隊列有什麼區別,以便在相同的成本下選擇一種最合適本系統的技術。 本文主要討論 ...
  • 在程式中如何讀寫文件?不同的編程語言有不同的方式,而 JAVA 則提出了“流”的概念,通過“流”來讀寫文件 什麼是流: 流(Stream)是指一連串的數據(字元或位元組),是以先進先出的方式發送信息的通道,數據源發送的數據經過這個通道到達目的地,按流向區分為輸入流和輸出流 什麼是輸入流:數據流從數據源 ...
  • 新聞 "FableConf 2019開始徵集提案" "2019理事會選舉 " "如同DSL一般的Elmish封裝器fable elmish,可以創建控制台或者終端界面" "介紹VS Code的遠程開發" "F (.NET Core 2.1)開發容器" "SAFE開發容器定義示例" "Rider 20 ...
  • #include<iostream> #include<string> #define ml 10 using namespace std; typedef struct{//定義Data數據項 std::string name; long num; }Data; struct Link{//定義結 ...
  • 數組,是我們最常用的,但是有時候,我們要用數組,但是又不知道數組的類的長度的時候, 我們java就有一個很好用的工具Collection,這都是java的爸爸的用心良苦,Collection中包含List和Set 和Map,但是今天老師講了List和Set。List是有序泛型數組。Set是無序泛型數 ...
  • wc命令含義 wc命令用查看文件的行數、單詞數、字元數等信息 wc命令格式 wc [-clmw] [file ...] wc命令參數以及實例介紹 (1)最基礎的查看文件的行數、單詞數、字元數等信息 (2)-l 選項 :統計文件的行數信息 (3) -w 選項:統計文件的單詞數信息 (4)-c 選項:統 ...
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...