題意 "題目鏈接" Sol 題解好神仙啊qwq。 一般看到這種考慮最大值的貢獻的題目不難想到單調數據結構 對於本題而言,我們可以預處理出每個位置左邊第一個比他大的位置$l_i$以及右邊第一個比他大的位置$r_i$ 那麼$(l_i, r_i)$會產生$p1$的貢獻 $[l_i + 1, i 1]$和$ ...
題意
Sol
題解好神仙啊qwq。
一般看到這種考慮最大值的貢獻的題目不難想到單調數據結構
對於本題而言,我們可以預處理出每個位置左邊第一個比他大的位置\(l_i\)以及右邊第一個比他大的位置\(r_i\)
那麼\((l_i, r_i)\)會產生\(p1\)的貢獻
\([l_i + 1, i - 1]\)和\(r_i\)會產生\(p2\)的貢獻
\([i + 1, r_i - 1]\)和\(l_i\)會產生\(p2\)的貢獻
這樣我們直接上區間加線段樹就能統計到每個點的貢獻了。
然後統計答案非常神仙,我們把詢問拆開,當枚舉到\(l - 1\)時,記此時\([l,r]\)的\(sum\)為\(s1\),當枚舉到\(r\)時,記此時\([l, r]\)的\(sum\)為s2,那麼該詢問的答案為\(s2 - s1\)
複雜度:\(O(nlogn)\)
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int MAXN = 1e6 + 10, INF = 1e9 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, p1, p2, a[MAXN], L[MAXN], R[MAXN];
LL ans[MAXN];
int ll[MAXN], rr[MAXN];
LL sum[MAXN], f[MAXN];
#define ls k << 1
#define rs k << 1 | 1
void ps(int k, int v) {
sum[k] += (rr[k] - ll[k] + 1) * v;
f[k] += v;
}
void pushdown(int k) {
if(!f[k]) return ;
ps(ls, f[k]); ps(rs, f[k]);
f[k] = 0;
}
void update(int k) {
sum[k] = sum[ls] + sum[rs];
}
void Build(int k, int l, int r) {
ll[k] = l; rr[k] = r;
if(l == r) return ;
int mid = l + r >> 1;
Build(ls, l, mid); Build(rs, mid + 1, r);
}
void IntAdd(int k, int l, int r, int ql, int qr, int v) {
if(ql > qr) return ;
if(ql <= l && r <= qr) {ps(k, v); return ;}
pushdown(k);
int mid = l + r >> 1;
if(ql <= mid) IntAdd(ls, l, mid, ql, qr, v);
if(qr > mid) IntAdd(rs, mid + 1, r, ql, qr, v);
update(k);
}
LL IntQuery(int k, int l, int r, int ql, int qr) {
if(ql > qr) return 0;
if(ql <= l && r <= qr) return sum[k];
pushdown(k);
int mid = l + r >> 1;
if(ql > mid) return IntQuery(rs, mid + 1, r, ql, qr);
else if(qr <= mid) return IntQuery(ls, l, mid, ql, qr);
else return IntQuery(ls, l, mid, ql, qr) + IntQuery(rs, mid + 1, r, ql, qr);
}
struct Query {
int l, r, val, id;
bool operator < (const Query &rhs) const {
return id < rhs.id;
}
};
vector<Query> q[MAXN];
void Pre() {
a[0] = INF; a[N + 1] = INF;
static int st[MAXN], top = 0;
for(int i = 1; i <= N + 1; i++) {
while(top && a[i] > a[st[top]]) R[st[top--]] = i;
L[i] = st[top];
st[++top] = i;
}
for(int i = 1; i <= N; i++) {
q[R[i]].push_back({L[i], L[i], p1, -R[i]});
q[L[i]].push_back({i + 1, R[i] - 1, p2, -L[i]});
q[R[i]].push_back({L[i] + 1, i - 1, p2, -R[i]});
}
}
int main() {
N = read(); M = read(); p1 = read(); p2 = read();
for(int i = 1; i <= N; i++) a[i] = read();
Pre();
Build(1, 0, N + 1);
for(int i = 1; i <= M; i++) {
int a = read(), b = read();
ans[i] = (b - a) * p1;
q[a - 1].push_back({a, b, -1, i});
q[b].push_back({a, b, 1, i});
}
for(int i = 0; i <= N; i++) {
sort(q[i].begin(), q[i].end());
for(auto &x : q[i]) {
if(x.id < 0) IntAdd(1, 0, N + 1, x.l, x.r, x.val);
else ans[x.id] += 1ll * x.val * (IntQuery(1, 0, N + 1, x.l, x.r));
}
}
for(int i = 1; i <= M; i++) cout << ans[i] << "\n";
return 0;
}