題意 "題目鏈接" Sol 這個東西的學名應該叫“閔可夫斯基和”。就是合併兩個凸包 首先我們先分別求出給出的兩個多邊形的凸包。合併的時候直接拿個雙指針掃一下,每次選最凸的點就行了。 複雜度$O(nlogn + n)$ cpp include define LL long long // define ...
題意
Sol
這個東西的學名應該叫“閔可夫斯基和”。就是合併兩個凸包
首先我們先分別求出給出的兩個多邊形的凸包。合併的時候直接拿個雙指針掃一下,每次選最凸的點就行了。
複雜度\(O(nlogn + n)\)
#include<bits/stdc++.h>
#define LL long long
//#define int long long
using namespace std;
const int MAXN = 1e6 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
struct Point {
LL x, y;
Point operator - (const Point &rhs) const {
return {x - rhs.x, y - rhs.y};
}
Point operator + (const Point &rhs) const {
return {x + rhs.x, y + rhs.y};
}
LL operator ^ (const Point &rhs) const {
return x * rhs.y - y * rhs.x;
}
bool operator < (const Point &rhs) const {
return x == rhs.x ? y < rhs.y : x < rhs.x;
}
bool operator == (const Point &rhs) const {
return x == rhs.x && y == rhs.y;
}
bool operator != (const Point &rhs) const {
return x != rhs.x || y != rhs.y;
}
};
vector<Point> v1, v2;
Point q[MAXN];
int top;
void insert(Point a) {
while(top > 1 && ((q[top] - q[top - 1]) ^ (a - q[top - 1])) < 0) top--;
q[++top] = a;
}
void GetConHull(vector<Point> &v) {
sort(v.begin(), v.end());
q[++top] = v[0];
for(int i = 1; i < v.size(); i++) if(v[i] != v[i - 1]) insert(v[i]);
for(int i = v.size() - 2; i >= 0; i--) if(v[i] != v[i + 1]) insert(v[i]);
v.clear();
for(int i = 1; i <= top; i++) v.push_back(q[i]); top = 0;
}
void Merge(vector<Point> &a, vector<Point> &b) {
vector<Point> c;
q[++top] = a[0] + b[0];
int i = 0, j = 0;
while(i + 1 < a.size() && j + 1< b.size()) {
Point n1 = (a[i] + b[j + 1]) - q[top], n2 = (a[i + 1] + b[j]) - q[top];
if((n1 ^ n2) < 0)
q[++top] = a[i + 1] + b[j], i++;
else
q[++top] = a[i] + b[j + 1], j++;
}
for(; i < a.size(); i++) q[++top] = a[i] + b[b.size() - 1];
for(; j < b.size(); j++) q[++top] = b[j] + a[a.size() - 1];
for(int i = 1; i <= top; i++) c.push_back(q[i]);
LL ans = 0;
//for(auto &g : c) printf("%d %d\n", g.x, g.y);
for(int i = 1; i < c.size() - 1; i++)
ans += (c[i] - c[0]) ^ (c[i + 1] - c[0]);
cout << ans;
}
signed main() {
N = read(); M = read();
for(int i = 1; i <= N; i++) {
int x = read(), y = read();
v1.push_back({x, y});
}
for(int i = 1; i <= M; i++) {
int x = read(), y = read();
v2.push_back({x, y});
}
GetConHull(v1);
GetConHull(v2);
Merge(v1, v2);
return 0;
}
/*
4 5
0 0 2 1 0 1 2 0
0 0 1 0 0 2 1 2 0 1
*/