因為學大數據前期的基礎課程就是java和linux.既然你有java基礎就省去了學習者部分課程的基礎,而且上手會容易很多! 再說說還需要學習哪些大數據技術,可以按我寫的順序學下去。 我還是要推薦下我自己創建的大數據資料分享群142973723,這是大數據學習交流的地方,不管你是小白還是大牛,小編都歡 ...
因為學大數據前期的基礎課程就是java和linux.既然你有java基礎就省去了學習者部分課程的基礎,而且上手會容易很多!
再說說還需要學習哪些大數據技術,可以按我寫的順序學下去。
我還是要推薦下我自己創建的大數據資料分享群142973723,這是大數據學習交流的地方,不管你是小白還是大牛,小編都歡迎,不定期分享乾貨,包括我整理的一份適合零基礎學習大數據資料和入門教程。
Hadoop
這是現在流行的大數據處理平臺幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡面包括幾個組件HDFS、MapReduce和YARN,HDFS是存儲數據的地方就像我們電腦的硬碟一樣文件都存儲在這個上面,MapReduce是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。
YARN是體現Hadoop平臺概念的重要組件有了它大數據生態體系的其它軟體就能在hadoop上運行了,這樣就能更好的利用HDFS大存儲的優勢和節省更多的資源比如我們就不用再單獨建一個spark的集群了,讓它直接跑在現有的hadoop yarn上面就可以了。
其實把Hadoop的這些組件學明白你就能做大數據的處理了,只不過你現在還可能對"大數據"到底有多大還沒有個太清楚的概念,聽我的別糾結這個。等以後你工作了就會有很多場景遇到幾十T/幾百T大規模的數據,到時候你就不會覺得數據大真好,越大越有你頭疼的。當然別怕處理這麼大規模的數據,因為這是你的價值所在,讓那些個搞Javaee的php的html5的和DBA的羡慕去吧。
記住學到這裡可以作為你學大數據的一個節點。
Zookeeper
這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。
Mysql
我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這裡主要的是學習SQL的語法,因為hive的語法和這個非常相似。
Sqoop
這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要註意Mysql的壓力。
Hive
這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapReduce程式。有的人說Pig那?它和Pig差不多掌握一個就可以了。
Oozie
既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapReduce、Spark腳本,還能檢查你的程式是否執行正確,出錯了給你發報警並能幫你重試程式,最重要的是還能幫你配置任務的依賴關係。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。
Hbase
這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。
Kafka
這是個比較好用的隊列工具,隊列是幹嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你幹嗎給我這麼多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程式去了。
因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。
Spark
它是用來彌補基於MapReduce處理數據速度上的缺點,它的特點是把數據裝載到記憶體中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。
會這些東西你就成為一個專業的大數據開發工程師了,月薪2W都是小毛毛雨
後續提高 :當然還是有很有可以提高的地方,比如學習下python,可以用它來編寫網路爬蟲。這樣我們就可以自己造數據了,網路上的各種數據你高興都可以下載到你的集群上去處理。
最後再學習下推薦、分類等演算法的原理這樣你能更好的與演算法工程師打交通。這樣你的公司就更離不開你了,大家都會對你喜歡的不要不要的。