Given a positive integer N, your task is to calculate the sum of the positive integers less than N which are not coprime to N. A is said to be coprime ...
Given a positive integer N, your task is to calculate the sum of the positive integers less than N which are not coprime to N. A is said to be coprime to B if A, B share no common positive divisors except 1.
InputFor each test case, there is a line containing a positive integer N(1 ≤ N ≤ 1000000000). A line containing a single 0 follows the last test case.OutputFor each test case, you should print the sum module 1000000007 in a line.Sample Input
3 4 0
Sample Output
0 2
如果gcd(n,i)==1,gcd(n,n-i)==1
證:i=1(mod n)
-i=-1(mod n)
n-i=-1+n (mod n)
n-i=1 (mod n)
通過歐拉函數一個數n中存在phi(n)個與之互質的數,因為i+(n-i)為n也就是有n對。
則與n互質數目之和為res=phi(n)/2*n,
ans=(n-1)*n/2-res。
#include<iostream> #include<cstring> #include<cmath> #include<algorithm> #include<cstdio> #define N 1000010 #define maxn 1000010 #define mod 1000000007 using namespace std; typedef long long ll; int p[N]; int prime[N]; int pn=0; bool vis[N]; int main() { for (int i = 2; i < N; i++) { if (vis[i]) continue; prime[pn++] = i; for (int j = i; j < N; j += i) vis[j] = 1; } ll n; while(~scanf("%lld",&n),n) { ll r=n; ll phi=n; for(int i=0;prime[i]*prime[i]<=r;i++) { ll tem=0; while(r%prime[i]==0) { r/=prime[i]; tem++; } if(tem) phi=phi-phi/prime[i]; } if(r!=1) phi-=phi/r; ll rem=n*phi/2; ll ans=n*(n-1)/2; printf("%lld\n",(ans-rem)%mod); } }