需求 設置飛機的一些坐標位置(經緯度高度),插值得到更多的坐標位置,然後飛機按照這些坐標集合形成的航線飛行,飛機的朝向、俯仰角以及飛機轉彎時的翻轉角根據坐標集合計算得出,而不需要手動設置heading、pitch、roll。 坐標插值 不知道為什麼,可能是飛行速度變化太大,我用Cesium自帶的插值 ...
需求
設置飛機的一些坐標位置(經緯度高度),插值得到更多的坐標位置,然後飛機按照這些坐標集合形成的航線飛行,飛機的朝向、俯仰角以及飛機轉彎時的翻轉角根據坐標集合計算得出,而不需要手動設置heading、pitch、roll。
坐標插值
不知道為什麼,可能是飛行速度變化太大,我用Cesium自帶的插值,計算出的航線很奇怪
// 如下代碼插值計算出的航線有問題
property.setInterpolationOptions({
interpolationDegree : 5,
interpolationAlgorithm : Cesium.LagrangePolynomialApproximation
});
自己寫的插值計算,效果等同於Cesium自帶的線性插值。
思路很簡單,每次插值,就是取時間的中點,兩個坐標的中點。
代碼如下:
/**
* 重新採樣this.DronePositions
*/
DetectsDrones.prototype.sameple = function () {
for (let i = 0; i < 3; i++) {
this.samepleOnce();
}
}
/**
* 重新採樣this.DronePositions
*/
DetectsDrones.prototype.samepleOnce = function () {
for (let i = 0; i < this.DronePositions.length - 1; i += 2) {
let pos1 = this.DronePositions[i];
let pos2 = this.DronePositions[i + 1];
let time1 = dayjs(pos1.time, 'YYYY-MM-DD HH:mm:ss');
let time2 = dayjs(pos2.time, 'YYYY-MM-DD HH:mm:ss');
let time = time1.add(time2.diff(time1) / 2.0, 'millisecond');
let lng = (pos1.targetPosition.lng + pos2.targetPosition.lng) / 2.0;
let lat = (pos1.targetPosition.lat + pos2.targetPosition.lat) / 2.0;
let height = (pos1.targetPosition.height + pos2.targetPosition.height) / 2.0;
let heading = (pos1.targetPosition.heading + pos2.targetPosition.heading) / 2.0;
let pitch = (pos1.targetPosition.pitch + pos2.targetPosition.pitch) / 2.0;
let roll = (pos1.targetPosition.roll + pos2.targetPosition.roll) / 2.0;
let pos = {
time: time.format('YYYY-MM-DD HH:mm:ss.SSS'),
targetPosition: {
lng: lng,
lat: lat,
height: height,
heading: heading,
pitch: pitch,
roll: roll,
}
}
this.DronePositions.splice(i + 1, 0, pos);
}
}
根據航線坐標集合計算heading、pitch、roll
從網上抄的計算heading和pitch的方法(參考博客:https://blog.csdn.net/u010447508/article/details/105562542?_refluxos=a10):
/**
* 根據兩個坐標點,獲取Heading(朝向)
* @param { Cesium.Cartesian3 } pointA
* @param { Cesium.Cartesian3 } pointB
* @returns
*/
function getHeading(pointA, pointB) {
//建立以點A為原點,X軸為east,Y軸為north,Z軸朝上的坐標系
const transform = Cesium.Transforms.eastNorthUpToFixedFrame(pointA);
//向量AB
const positionvector = Cesium.Cartesian3.subtract(pointB, pointA, new Cesium.Cartesian3());
//因transform是將A為原點的eastNorthUp坐標系中的點轉換到世界坐標系的矩陣
//AB為世界坐標中的向量
//因此將AB向量轉換為A原點坐標系中的向量,需乘以transform的逆矩陣。
const vector = Cesium.Matrix4.multiplyByPointAsVector(
Cesium.Matrix4.inverse(transform, new Cesium.Matrix4()),
positionvector,
new Cesium.Cartesian3()
);
//歸一化
const direction = Cesium.Cartesian3.normalize(vector, new Cesium.Cartesian3());
//heading
let heading = Math.atan2(direction.y, direction.x) - Cesium.Math.PI_OVER_TWO;
heading = Cesium.Math.TWO_PI - Cesium.Math.zeroToTwoPi(heading);
return Cesium.Math.toDegrees(heading);
}
/**
* 根據兩個坐標點,獲取Pitch(仰角)
* @param { Cesium.Cartesian3 } pointA
* @param { Cesium.Cartesian3 } pointB
* @returns
*/
function getPitch(pointA, pointB) {
let transfrom = Cesium.Transforms.eastNorthUpToFixedFrame(pointA);
const vector = Cesium.Cartesian3.subtract(pointB, pointA, new Cesium.Cartesian3());
let direction = Cesium.Matrix4.multiplyByPointAsVector(Cesium.Matrix4.inverse(transfrom, transfrom), vector, vector);
Cesium.Cartesian3.normalize(direction, direction);
//因為direction已歸一化,斜邊長度等於1,所以餘弦函數等於direction.z
let pitch = Cesium.Math.PI_OVER_TWO - Cesium.Math.acosClamped(direction.z);
return Cesium.Math.toDegrees(pitch);
}
根據航線坐標集合計算heading、pitch、roll:
代碼中this.DronePositions是無人機群的坐標集合,坐標放在targetPosition屬性中
/**
* 計算無人機群的heading
*/
DetectsDrones.prototype.calcHeading = function () {
// 清空原有heading
this.DronePositions.map(pos => {
pos.targetPosition.heading = undefined;
});
for (let i = 0; i < this.DronePositions.length - 1; i++) {
let pos1 = this.DronePositions[i];
let pos2 = this.DronePositions[i + 1];
let heading = -90 + getHeading(Cesium.Cartesian3.fromDegrees(pos1.targetPosition.lng, pos1.targetPosition.lat), Cesium.Cartesian3.fromDegrees(pos2.targetPosition.lng, pos2.targetPosition.lat));
if (!pos1.targetPosition.heading) {
pos1.targetPosition.heading = heading;
}
pos2.targetPosition.heading = heading;
}
}
/**
* 計算無人機群的pitch
*/
DetectsDrones.prototype.calcPitch = function () {
// 清空原有pitch
this.DronePositions.map(pos => {
pos.targetPosition.pitch = undefined;
});
for (let i = 0; i < this.DronePositions.length - 1; i++) {
let pos1 = this.DronePositions[i];
let pos2 = this.DronePositions[i + 1];
let pitch = getPitch(Cesium.Cartesian3.fromDegrees(pos1.targetPosition.lng, pos1.targetPosition.lat, pos1.targetPosition.height), Cesium.Cartesian3.fromDegrees(pos2.targetPosition.lng, pos2.targetPosition.lat, pos2.targetPosition.height));
if (!pos1.targetPosition.pitch) {
pos1.targetPosition.pitch = pitch;
}
pos2.targetPosition.pitch = pitch;
}
}
/**
* 計算無人機群的roll(不支持轉彎大於90度)
*/
DetectsDrones.prototype.calcRoll = function () {
// 清空原有roll
this.DronePositions.map(pos => {
pos.targetPosition.roll = undefined;
});
for (let i = 1; i < this.DronePositions.length - 1; i++) {
let pos1 = this.DronePositions[i];
let pos2 = this.DronePositions[i + 1];
let deltaHeading = pos2.targetPosition.heading - pos1.targetPosition.heading;
pos2.targetPosition.roll = deltaHeading / 1.5;
}
}
效果
主要是飛機的朝向和轉彎時的翻滾,俯仰角這裡沒體現。
遇到的問題
- 插值計算的問題,就是設置的坐標集合,是拆線,最好把它插值成平滑曲線,但是Cesium自帶的插值,有時間參數,而我想僅僅通過經緯度集合來插值。
- 我寫的計算roll的方法有問題,不支持轉彎大於90度的情況,花了一些時間,沒搞定。轉彎小於90度,湊合用,測試了幾組數據沒問題,但仍不確定有沒有BUG。嚴格來講,根據這些參數,這個roll是算不出來的,但是,該演算法要求根據飛機的轉彎半徑及方向,給出一個相對合理的roll值。
拋磚引玉,有沒有高手給個提示,插值問題怎麼解決?roll的正確的通用的計算方法?