Java開發者的Python快速實戰指南:探索向量資料庫之圖像相似搜索-文字版

来源:https://www.cnblogs.com/guoxiaoyu/archive/2023/12/04/17868717.html
-Advertisement-
Play Games

在開始講解之前,我想給大家介紹一個很有用的第三方包,它就是gradio。如果你想與他人共用你的機器學習模型、API或數據科學工作流的最佳方式之一,可以創建一個互動式應用,讓用戶或同事可以在瀏覽器中試用你的演示。而gradio正是可以幫助你在Python中構建這樣的演示,並且只需要幾行代碼即可完成! ...


首先,我要向大家道個歉。原本我計劃今天向大家展示如何將圖片和視頻等形式轉換為向量並存儲在向量資料庫中,但是當我查看文檔時才發現,騰訊的向量資料庫尚未完全開發完成。因此,今天我將用文本形式來演示相似圖片搜索。如果您對騰訊的產品動態不太瞭解,可以查看官方網址:https://cloud.tencent.com/document/product/1709/95477

在開始講解之前,我想給大家介紹一個很有用的第三方包,它就是gradio。如果你想與他人共用你的機器學習模型、API或數據科學工作流的最佳方式之一,可以創建一個互動式應用,讓用戶或同事可以在瀏覽器中試用你的演示。而gradio正是可以幫助你在Python中構建這樣的演示,並且只需要幾行代碼即可完成!

作為一個後端開發者,我瞭解如果要我開發前端代碼來進行演示,可能需要花費很長時間,甚至可能需要以月為單位計算。所幸,我發現了gradio這個工具的好處,它可以幫助我解決這個問題。使用gradio,我只需要專註於實現我的方法,而不需要關心如何實現界面部分,這對於像我這樣不擅長前端開發的人來說非常合適。gradio為我提供了一個簡單而有效的解決方案。

源碼倉庫地址:https://github.com/StudiousXiaoYu/tx-image-search

Gradio

關於gradio的環境配置和官方文檔,我就不再贅述了,有興趣的同學可以去官方文檔地址https://www.gradio.app/guides/quickstart 查看。對於後端開發者來說,上手使用gradio非常容易。

image

接下來,我們將搭建一個最簡單的圖片展示應用。由於我要實現的功能是圖片展示,所以我將直接上代碼。

數據準備

首先,我們需要準備數據。我已經從官方獲取了訓練數據,並將圖片的信息和路徑保存到了我的向量資料庫中。幸運的是,這些數據已經被整理成了一個CSV文件。現在,我想要將這些數據插入到資料庫中。這是一個很好的機會來練習一下我們的Python語法,比如讀取文件、引用第三方包以及使用迴圈。讓我們來看一下具體的實現方法。

我的csv文件是這樣的:

id,path,label
0,./train/brain_coral/n01917289_1783.JPEG,brain_coral
1,./train/brain_coral/n01917289_4317.JPEG,brain_coral
2,./train/brain_coral/n01917289_765.JPEG,brain_coral
3,./train/brain_coral/n01917289_1079.JPEG,brain_coral
4,./train/brain_coral/n01917289_2484.JPEG,brain_coral
5,./train/brain_coral/n01917289_1082.JPEG,brain_coral
6,./train/brain_coral/n01917289_1538.JPEG,brain_coral

在這個文件中,第一行是列名,從第二行開始,我可以開始解析數據了。

之前已經完成了資料庫的創建,所以我就不再演示了。現在,我們將直接開始設計集合,並將數據插入到我們的集合中。

import gradio as gr
import numpy as np
import tcvectordb
from tcvectordb.model.collection import Embedding
from tcvectordb.model.document import Document, Filter, SearchParams
from tcvectordb.model.enum import FieldType, IndexType, MetricType, ReadConsistency,EmbeddingModel
from tcvectordb.model.index import Index, VectorIndex, FilterIndex, HNSWParams

client = tcvectordb.VectorDBClient(url='http://*****',
                                   username='root', key='1tWQ*****',
                                   read_consistency=ReadConsistency.EVENTUAL_CONSISTENCY, timeout=30)
db = client.database('db-xiaoyu')

上面提到的這些流程是基本的,我就不再詳細解釋了。我們可以直接開始連接,但是在此之前,我們需要先創建一個專門用於圖片搜索的集合。之前我們創建的是用於文本搜索的集合,現在我們需要創建一個新的集合來區分。以下是相應的代碼:

# -- index config
index = Index(
    FilterIndex(name='id', field_type=FieldType.String, index_type=IndexType.PRIMARY_KEY),
    VectorIndex(name='vector', dimension=768, index_type=IndexType.HNSW,
                metric_type=MetricType.COSINE, params=HNSWParams(m=16, efconstruction=200))
)

# Embedding config
ebd = Embedding(vector_field='vector', field='image_info', model=EmbeddingModel.BGE_BASE_ZH)

# create a collection
coll = db.create_collection(
    name='image-xiaoyu',
    shard=1,
    replicas=0,
    description='this is a collection of test embedding',
    embedding=ebd,
    index=index
)

由於目前向量資料庫尚未完全支持圖像文件轉換為向量的功能,因此我們決定將其改為存儲圖像描述信息,並將圖像路徑直接存儲為普通欄位。由於我們對路徑沒有過濾要求,因此將其作為普通欄位進行存儲。所有信息已經成功存儲在CSV文件中,因此我們只需直接讀取該文件內容並將其存入向量資料庫中即可。以下是相關代碼示例:

data = np.genfromtxt('./reverse_image_search/reverse_image_search.csv', delimiter=',', skip_header=1, usecols=[0, 1, 2], dtype=None)
doc_list = []
for row in data:
    id_row = str(row[0])
    image_url = row[1].decode()
    image_info = row[2].decode()
    doc_list.append(Document(id=id_row,image_url=image_url,image_info=image_info))
res = coll.upsert(
        documents=doc_list,
        build_index=True
    )

在這段代碼中,我使用了 import numpy as np 語句來導入 numpy 庫。為什麼我使用它呢?因為我在搜索中發現它可以處理 CSV 文件。畢竟,在Python編程中總是喜歡使用現成的工具。最後,我將 Document 封裝成一個列表,並將其全部插入到集合中。

構建Gradio交互界面

數據準備工作已經完成,接下來我們需要考慮如何建立一個交互界面。我知道Python有很多優秀的庫,其中有一個可以一鍵構建交互界面的庫,這真的很厲害。與Java的自定義界面相比,它們是完全不同的東西,因為他倆沒得比。為了實現交互界面的功能,我們需要在一個新的py文件中編寫以下代碼:

import gradio as gr
import tcvectordb
from tcvectordb.model.document import SearchParams
from tcvectordb.model.enum import ReadConsistency

client = tcvectordb.VectorDBClient(url='http://lb-m*****',
                                   username='root', key='1tWQ*****',
                                   read_consistency=ReadConsistency.EVENTUAL_CONSISTENCY, timeout=30)
db = client.database('db-xiaoyu')
coll = db.collection('image-xiaoyu')


def similar_image_text(text):
    doc_lists = coll.searchByText(
        embeddingItems=[text],
        params=SearchParams(ef=200),
        limit=3,
        retrieve_vector=False,
        output_fields=['image_url', 'image_info']
    )
    img_list = []
    for i,docs in enumerate(doc_lists.get("documents")):
        for my_doc in docs:
            print(type(my_doc["image_url"]))
            img_list.append(str(my_doc["image_url"]))
    return img_list


def similar_image(x):
    pass


with gr.Blocks() as demo:
    gr.Markdown("使用此演示通過文本/圖像文件來找到相似圖片。")
    with gr.Tab("文本搜索"):
        with gr.Row():
            text_input = gr.Textbox()
            image_text_output = gr.Gallery(label="最終的結果圖片").style(height='auto', columns=3)
        text_button = gr.Button("開始搜索")
    with gr.Tab("圖像搜索"):
        with gr.Row():
            image_input = gr.Image()
            image_output = gr.Gallery(label="最終的結果圖片").style(height='auto', columns=3)
        image_button = gr.Button("開始搜索")

    with gr.Accordion("努力的小雨探索AI世界!"):
        gr.Markdown("先將圖片或者路徑存儲到向量資料庫中。然後通過文本/圖像文件來找到相似圖片。")

    text_button.click(similar_image_text, inputs=text_input, outputs=image_text_output)
    image_button.click(similar_image, inputs=image_input, outputs=image_output)

demo.launch()

我創建了一個帶有兩個標簽頁的界面。由於本次項目不需要使用圖像相似搜索功能,所以等到該功能推出後,我會再次進行圖像方面的相似搜索演示。目前,我們只能通過圖片描述來查找並顯示圖片。這部分沒有太多值得講的,我只是對 Gardio 官方示例進行了一些修改。如果你還不清楚的話,我建議你查看官方示例和介紹。現在,讓我們來看一下我的運行界面吧。

image

當我輸入"gold"後,根據我所存儲的圖片描述是"gold fish",所以可以找到對應的匹配項。當我看到三種金魚的圖片時,就說明我們的運行是正常的。我已經為圖片相似搜索留出來了,以便及時更新。

總結

今天我們寫代碼時,基本上已經熟練掌握了Python的語法。剩下的就是學習如何使用第三方包,以及在編寫過程中遇到不熟悉的包時,可以通過百度搜索來獲取答案。雖然並沒有太大難度,但是對於使用gradio來說,可能需要花費一些時間上手。有時會遇到一些錯誤,不像Java那樣能夠一眼識別出問題所在,需要上網搜索來解決。


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 題目 給你一個非負整數數組 nums ,你最初位於數組的 第一個下標 。數組中的每個元素代表你在該位置可以跳躍的最大長度。 判斷你是否能夠到達最後一個下標,如果可以,返回 true ;否則,返回 false 。 示例 1: 輸入:nums = [2,3,1,1,4] 輸出:true 解釋:可以先跳 ...
  • 寫在前面 昨晚應該是睡的最好一天吧,最近一個月睡眠好差,睡不著不說,而且半夜總醒,搞的我第二天就會超沒精神。 昨天下午去姐姐家,我剛進屋,小外甥直接就問我說: 老舅,你都很長時間沒來啦,**(前女友)哪去了, 我們都好久沒出溜溜了! 我頓了下說,她不喜歡我們了,等以後天暖和,我們再去溜溜。 才發現, ...
  • JSON(JavaScript Object Notation)是一種輕量級的數據交換格式,它以易於閱讀和編寫的文本形式表示數據。JSON 是一種獨立於編程語言的數據格式,因此在不同的編程語言中都有對應的解析器和生成器。JSON 格式的設計目標是易於理解、支持複雜數據結構和具有良好的可擴展性。 ...
  • 常用操作文件目錄的函數 1. CreateDirectory 創建文件夾 原型: BOOL CreateDirectory( LPCTSTR lpPathName, LPSECURITY_ATTRIBUTES lpSecurityAttributes ); 參數說明: lpPathName 要創建的 ...
  • developer-roadmap —— 提供最全的開發者技術路線指南。前端開發、後端開發、全棧開發、DevOps、Android 開發、AI、大數據、游戲開發等方向都有詳盡的學習路線思維導圖。 ...
  • 原文:juejin.cn/post/7291564831710445622 JDK線上程的Stop方法時明確不得強行銷毀一個線程,要優雅的退出線程。 何謂優雅退出線程,即業務將進行中請求正確被處理,取消待執行請求,執行資源回收,最終Thread Runable run 方法return 結束執行。 ...
  • 在業務邏輯中有時候會遇到兩層for迴圈的情況,觸發某些條件時,需要直接退出兩層for迴圈 而python官方是沒有 goto 語句的那麼我們可以這樣實現 第一種定義變數flag,根據flag的值做退出 flag=True for i in range(10): for j in range(10): ...
  • 當你使用一個不存在的鍵(key)去訪問一個Python字典(dict)時,會觸發一個KeyError異常。這是Python提供的一種機制,用於指示你正在嘗試訪問一個字典中不存在的鍵。 以下是一個簡單的示例,演示了當使用一個不存在的鍵去訪問字典時會發生的情況: my_dict = {"apple": ...
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...