程式開發中常用的10種演算法,你用過幾種?

来源:https://www.cnblogs.com/hanbing81868164/archive/2023/11/30/17867303.html
-Advertisement-
Play Games

當編寫程式時,瞭解和使用不同的演算法對解決問題至關重要。以下是C#中常用的10種演算法,每個演算法都伴隨著示例代碼和詳細說明。 1. 冒泡排序 (Bubble Sort): 冒泡排序是一種簡單的比較排序演算法,它多次遍曆數組,將較大的元素逐漸浮動到數組的末尾。 public static void Bubb ...


當編寫程式時,瞭解和使用不同的演算法對解決問題至關重要。以下是C#中常用的10種演算法,每個演算法都伴隨著示例代碼和詳細說明。

1. 冒泡排序 (Bubble Sort):

冒泡排序是一種簡單的比較排序演算法,它多次遍曆數組,將較大的元素逐漸浮動到數組的末尾。

public static void BubbleSort(int[] arr)
{
    int n = arr.Length;
    for (int i = 0; i < n - 1; i++)
    {
        for (int j = 0; j < n - i - 1; j++)
        {
            if (arr[j] > arr[j + 1])
            {
                int temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
            }
        }
    }
}

2. 快速排序 (Quick Sort):

快速排序是一種高效的分治排序演算法,它通過選擇一個基準元素並將數組分為較小和較大的兩部分來進行排序。

public static void QuickSort(int[] arr, int low, int high)
{
    if (low < high)
    {
        int partitionIndex = Partition(arr, low, high);
        QuickSort(arr, low, partitionIndex - 1);
        QuickSort(arr, partitionIndex + 1, high);
    }
}

public static int Partition(int[] arr, int low, int high)
{
    int pivot = arr[high];
    int i = low - 1;

    for (int j = low; j < high; j++)
    {
        if (arr[j] < pivot)
        {
            i++;
            int temp = arr[i];
            arr[i] = arr[j];
            arr[j] = temp;
        }
    }

    int swap = arr[i + 1];
    arr[i + 1] = arr[high];
    arr[high] = swap;

    return i + 1;
}

3. 合併排序 (Merge Sort):

合併排序是一種穩定的分治排序演算法,它將數組分成兩半,分別排序後再合併。

public static void MergeSort(int[] arr)
{
    int n = arr.Length;
    if (n > 1)
    {
        int mid = n / 2;
        int[] left = new int[mid];
        int[] right = new int[n - mid];

        for (int i = 0; i < mid; i++)
            left[i] = arr[i];
        for (int i = mid; i < n; i++)
            right[i - mid] = arr[i];

        MergeSort(left);
        MergeSort(right);

        int i = 0, j = 0, k = 0;
        while (i < mid && j < (n - mid))
        {
            if (left[i] < right[j])
                arr[k++] = left[i++];
            else
                arr[k++] = right[j++];
        }
        while (i < mid)
            arr[k++] = left[i++];
        while (j < (n - mid))
            arr[k++] = right[j++];
    }
}

4. 二分查找 (Binary Search):

二分查找是一種高效的查找演算法,它要求在有序數組中查找特定元素。

public static int BinarySearch(int[] arr, int target)
{
    int low = 0, high = arr.Length - 1;
    while (low <= high)
    {
        int mid = (low + high) / 2;
        if (arr[mid] == target)
            return mid;
        else if (arr[mid] < target)
            low = mid + 1;
        else
            high = mid - 1;
    }
    return -1;
}

5. 深度優先搜索 (Depth-First Search, DFS):

DFS 是一種圖遍歷演算法,它從起始節點開始,沿著路徑儘可能深入,然後返回並繼續搜索。

using System;
using System.Collections.Generic;

public class Graph
{
    private int V;
    private List<int>[] adj;

    public Graph(int v)
    {
        V = v;
        adj = new List<int>[v];
        for (int i = 0; i < v; i++)
            adj[i] = new List<int>();
    }

    public void AddEdge(int v, int w)
    {
        adj[v].Add(w);
    }

    public void DFS(int v)
    {
        bool[] visited = new bool[V];
        DFSUtil(v, visited);
    }

    private void DFSUtil(int v, bool[] visited)
    {
        visited[v] = true;
        Console.Write(v + " ");

        foreach (var n in adj[v])
        {
            if (!visited[n])
                DFSUtil(n, visited);
        }
    }
}

6. 廣度優先搜索 (Breadth-First Search, BFS):

BFS 是一種圖遍歷演算法,它從起始節點開始,逐層遍歷,先訪問所有相鄰的節點,然後再逐層擴展。

using System;
using System.Collections.Generic;

public class Graph
{
    private int V;
    private List<int>[] adj;

    public Graph(int v)
    {
        V = v;
        adj = new List<int>[v];
        for (int i = 0; i < v; i++)
            adj[i] = new List<int>();
    }

    public void AddEdge(int v, int w)
    {
        adj[v].Add(w);
    }

    public void BFS(int s)
    {
        bool[] visited = new bool[V];

        Queue<int> queue = new Queue<int>();
        visited[s] = true;
        queue.Enqueue(s);

        while (queue.Count != 0)
        {
            s = queue.Dequeue();
            Console.Write(s + " ");

            foreach (var n in adj[s])
            {
                if (!visited[n])
                {
                    visited[n] = true;
                    queue.Enqueue(n);
                }
            }
        }
    }
}

7. Dijkstra演算法:

Dijkstra演算法是一種用於查找圖中最短路徑的演算法。

public class Dijkstra
{
    private static int V = 9;

    private int MinDistance(int[] dist, bool[] sptSet)
    {
        int min = int.MaxValue;
        int minIndex = 0;

        for (int v = 0; v < V; v++)
        {
            if (!sptSet[v] && dist

[v] <= min)
            {
                min = dist[v];
                minIndex = v;
            }
        }

        return minIndex;
    }

    private void PrintSolution(int[] dist)
    {
        Console.WriteLine("Vertex \t Distance from Source");
        for (int i = 0; i < V; i++)
        {
            Console.WriteLine(i + " \t " + dist[i]);
        }
    }

    public void FindShortestPath(int[,] graph, int src)
    {
        int[] dist = new int[V];
        bool[] sptSet = new bool[V];

        for (int i = 0; i < V; i++)
        {
            dist[i] = int.MaxValue;
            sptSet[i] = false;
        }

        dist[src] = 0;

        for (int count = 0; count < V - 1; count++)
        {
            int u = MinDistance(dist, sptSet);

            sptSet[u] = true;

            for (int v = 0; v < V; v++)
            {
                if (!sptSet[v] && graph[u, v] != 0 && dist[u] != int.MaxValue && dist[u] + graph[u, v] < dist[v])
                {
                    dist[v] = dist[u] + graph[u, v];
                }
            }
        }

        PrintSolution(dist);
    }
}

8. 最小生成樹 (Minimum Spanning Tree, MST) - Prim演算法:

Prim演算法用於找到圖的最小生成樹,它從一個初始頂點開始,逐漸擴展生成樹。

public class PrimMST
{
    private static int V = 5;

    private int MinKey(int[] key, bool[] mstSet)
    {
        int min = int.MaxValue;
        int minIndex = 0;

        for (int v = 0; v < V; v++)
        {
            if (!mstSet[v] && key[v] < min)
            {
                min = key[v];
                minIndex = v;
            }
        }

        return minIndex;
    }

    private void PrintMST(int[] parent, int[,] graph)
    {
        Console.WriteLine("Edge \t Weight");
        for (int i = 1; i < V; i++)
        {
            Console.WriteLine(parent[i] + " - " + i + " \t " + graph[i, parent[i]]);
        }
    }

    public void FindMST(int[,] graph)
    {
        int[] parent = new int[V];
        int[] key = new int[V];
        bool[] mstSet = new bool[V];

        for (int i = 0; i < V; i++)
        {
            key[i] = int.MaxValue;
            mstSet[i] = false;
        }

        key[0] = 0;
        parent[0] = -1;

        for (int count = 0; count < V - 1; count++)
        {
            int u = MinKey(key, mstSet);

            mstSet[u] = true;

            for (int v = 0; v < V; v++)
            {
                if (graph[u, v] != 0 && !mstSet[v] && graph[u, v] < key[v])
                {
                    parent[v] = u;
                    key[v] = graph[u, v];
                }
            }
        }

        PrintMST(parent, graph);
    }
}

9. 最小生成樹 (Minimum Spanning Tree, MST) - Kruskal演算法:

Kruskal演算法也用於找到圖的最小生成樹,它基於邊的權重排序。

using System;
using System.Collections.Generic;

public class Graph
{
    private int V, E;
    private List<Edge> edges;

    public Graph(int v, int e)
    {
        V = v;
        E = e;
        edges = new List<Edge>(e);
    }

    public void AddEdge(int src, int dest, int weight)
    {
        edges.Add(new Edge(src, dest, weight));
    }

    public void KruskalMST()
    {
        edges.Sort();

        int[] parent = new int[V];
        int[] rank = new int[V];

        for (int i = 0; i < V; i++)
        {
            parent[i] = i;
            rank[i] = 0;
        }

        int i = 0;
        int e = 0;

        List<Edge> mst = new List<Edge>();

        while (e < V - 1)
        {
            Edge nextEdge = edges[i++];
            int x = Find(parent, nextEdge.src);
            int y = Find(parent, nextEdge.dest);

            if (x != y)
            {
                mst.Add(nextEdge);
                Union(parent, rank, x, y);
                e++;
            }
        }

        Console.WriteLine("Edges in Minimum Spanning Tree:");
        foreach (var edge in mst)
        {
            Console.WriteLine($"{edge.src} - {edge.dest} with weight {edge.weight}");
        }
    }

    private int Find(int[] parent, int i)
    {
        if (parent[i] == i)
            return i;
        return Find(parent, parent[i]);
    }

    private void Union(int[] parent, int[] rank, int x, int y)
    {
        int xRoot = Find(parent, x);
        int yRoot = Find(parent, y);

        if (rank[xRoot] < rank[yRoot])
            parent[xRoot] = yRoot;
        else if (rank[xRoot] > rank[yRoot])
            parent[yRoot] = xRoot;
        else
        {
            parent[yRoot] = xRoot;
            rank[xRoot]++;
        }
    }
}

public class Edge : IComparable<Edge>
{
    public int src, dest, weight;

    public Edge(int src, int dest, int weight)
    {
        this.src = src;
        this.dest = dest;
        this.weight = weight;
    }

    public int CompareTo(Edge other)
    {
        return weight - other.weight;
    }
}

10.Floyd-Warshall演算法是一種用於解決所有點對最短路徑的動態規划算法。

下麵是C#中的Floyd-Warshall演算法的實現示例:

using System;

class FloydWarshall
{
    private static int INF = int.MaxValue; // 代表無窮大的值

    public static void FindShortestPath(int[,] graph)
    {
        int V = graph.GetLength(0);

        // 創建一個二維數組dist,用於保存最短路徑的長度
        int[,] dist = new int[V, V];

        // 初始化dist數組
        for (int i = 0; i < V; i++)
        {
            for (int j = 0; j < V; j++)
            {
                dist[i, j] = graph[i, j];
            }
        }

        // 逐個頂點考慮,如果經過k頂點路徑比原路徑短,就更新dist數組
        for (int k = 0; k < V; k++)
        {
            for (int i = 0; i < V; i++)
            {
                for (int j = 0; j < V; j++)
                {
                    if (dist[i, k] != INF && dist[k, j] != INF
                        && dist[i, k] + dist[k, j] < dist[i, j])
                    {
                        dist[i, j] = dist[i, k] + dist[k, j];
                    }
                }
            }
        }

        // 輸出最短路徑矩陣
        Console.WriteLine("最短路徑矩陣:");
        for (int i = 0; i < V; i++)
        {
            for (int j = 0; j < V; j++)
            {
                if (dist[i, j] == INF)
                    Console.Write("INF\t");
                else
                    Console.Write(dist[i, j] + "\t");
            }
            Console.WriteLine();
        }
    }

    static void Main(string[] args)
    {
        int V = 4; // 頂點數
        int[,] graph = {
            {0, 5, INF, 10},
            {INF, 0, 3, INF},
            {INF, INF, 0, 1},
            {INF, INF, INF, 0}
        };

        FindShortestPath(graph);
    }
}

在這個示例中,我們使用Floyd-Warshall演算法來計算給定圖的最短路徑矩陣。該演算法通過考慮逐個中間頂點k,不斷更新最短路徑矩陣dist。最終,我們可以獲得所有點對之間的最短路徑長度。


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 大家好,夜鶯項目發佈 v6.4.0 版本,新增全局巨集變數功能,本文為大家簡要介紹一下相關更新內容。 全局巨集變數功能 像 SMTP 的配置中密碼類型的信息,之前都是以明文的方式在頁面展示,夜鶯支持全局巨集變數之後,可以在變數管理配置一個 smtp_password 的密碼類型的變數,在 SMTP 配置頁 ...
  • Crypto++ (CryptoPP) 是一個用於密碼學和加密的 C++ 庫。它是一個開源項目,提供了大量的密碼學演算法和功能,包括對稱加密、非對稱加密、哈希函數、消息認證碼 (MAC)、數字簽名等。Crypto++ 的目標是提供高性能和可靠的密碼學工具,以滿足軟體開發中對安全性的需求。高級加密標準(... ...
  • 作者查閱了Sentinel官網、51CTO、CSDN、碼農家園、博客園等很多技術文章都沒有很準確的springmvc集成Sentinel的示例,因此整理了本文,主要介紹SpringMvc集成Sentinel ...
  • ArrayList是Java中的一個動態數組類,可以根據實際需要自動調整數組的大小。ArrayList是基於數組實現的,它內部維護的是一個Object數組,預設初始化容量為10,當添加的元素個數超過了當前容量時,會自動擴容。ArrayList也被廣泛用於Java中的集合框架,例如Java中的List... ...
  • 統計學有時候會被誤解,好像必須有大量的樣本數據,才能使統計結果有意義。這會讓我們覺得統計學離我們的日常生活很遙遠。 其實,如果數據的準確度高的話,少量的樣本數據同樣能反映出真實的情況。比如,很多國家選舉時不斷做的民意調查,一般做到有效樣本1600多份就夠了,不管你是幾千萬人的小國家,還是數億人的大國 ...
  • Crypto++ (CryptoPP) 是一個用於密碼學和加密的 C++ 庫。它是一個開源項目,提供了大量的密碼學演算法和功能,包括對稱加密、非對稱加密、哈希函數、消息認證碼 (MAC)、數字簽名等。Crypto++ 的目標是提供高性能和可靠的密碼學工具,以滿足軟體開發中對安全性的需求。該庫包含了許多... ...
  • .NET Core 和 Vue3 結合使用 SignalR 可以實現強大的實時通訊功能,允許實時雙向通信。在這個示例中,我們將詳細說明如何創建一個簡單的聊天應用程式,演示如何使用 .NET Core SignalR 後端和 Vue3 前端來實現實時通訊功能。 步驟1:準備工作 確保你已經安裝了以下工 ...
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...