cost量化分析

来源:https://www.cnblogs.com/greatsql/archive/2023/03/10/17204186.html
-Advertisement-
Play Games

GreatSQL社區原創內容未經授權不得隨意使用,轉載請聯繫小編並註明來源。 GreatSQL是MySQL的國產分支版本,使用上與MySQL一致。 作者: xryz 文章來源:GreatSQL社區原創 前言: 我們在日常維護資料庫的時候,經常會遇到查詢慢的語句,這時候一般會通過執行EXPLAIN去查 ...


  • GreatSQL社區原創內容未經授權不得隨意使用,轉載請聯繫小編並註明來源。
  • GreatSQL是MySQL的國產分支版本,使用上與MySQL一致。
  • 作者: xryz
  • 文章來源:GreatSQL社區原創

前言:

我們在日常維護資料庫的時候,經常會遇到查詢慢的語句,這時候一般會通過執行EXPLAIN去查看它的執行計劃,但是執行計劃往往只給我們帶來了最基礎的分析信息,比如是否有使用索引,還有一些其他供我們分析的信息,比如使用了臨時表、排序等等,卻無法展示為什麼一些其他的執行計劃未被選擇,比如說明明有索引,或者好幾個索引,但是為什麼查詢時未使用到期望的索引等

explain select * from basic_person_info t1 join basic_person_info2 t2 on t1.id_num=t2.id_num where t1.age >10 and t2.age<20;
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+
| id | select_type | table | partitions | type   | possible_keys                        | key           | key_len | ref            | rows | filtered | Extra                 |
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+
|  1 | SIMPLE      | t2    | NULL       | range  | id_num_unique,idx_age,idx_age_id_num | idx_age       | 1       | NULL           | 9594 |   100.00 | Using index condition |
|  1 | SIMPLE      | t1    | NULL       | eq_ref | id_num_unique,idx_age                | id_num_unique | 60      | test.t2.id_num |    1 |    50.00 | Using where           |
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+
2 rows in set, 1 warning (0.01 sec)

如上面這個例子,為什麼t2表上列出了多個可能使用的索引,卻選擇了idx_age,優化器為什麼選擇了指定的索引,這時候並不能直觀的看出問題,這時候我們就可以開啟optimizer_trace跟蹤分析MySQL具體是怎麼選擇出最優的執行計劃的。

OPTIMIZER_TRACE:

optimizer_trace是什麼:

optimizer_trace是一個具有跟蹤功能的工具,可以跟蹤執行的語句的解析優化執行過程,並將跟蹤到的信息記錄到INFORMATION_SCHEMA.OPTIMIZER_TRACE表中,但是每個會話都只能跟蹤它自己執行的語句,並且表中預設只記錄最後一個查詢的跟蹤結果

使用方法:

# 打開optimizer trace功能 (預設情況下它是關閉的):
set optimizer_trace="enabled=on";
select ...; # 這裡輸入你自己的查詢語句
SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE;
# 當你停止查看語句的優化過程時,把optimizer trace功能關閉
set optimizer_trace="enabled=off";

相關參數:

mysql>  show variables like '%optimizer_trace%';
+------------------------------+----------------------------------------------------------------------------+
| Variable_name                | Value                                                                      |
+------------------------------+----------------------------------------------------------------------------+
| optimizer_trace              | enabled=on,one_line=off                                                    |
| optimizer_trace_features     | greedy_search=on,range_optimizer=on,dynamic_range=on,repeated_subselect=on |
| optimizer_trace_limit        | 1                                                                          |
| optimizer_trace_max_mem_size | 1048576                                                                    |
| optimizer_trace_offset       | -1                                                                         |
+------------------------------+----------------------------------------------------------------------------+
  • optimizer_trace: enabled 開啟/關閉optimizer_trace,one_line 是否單行顯示,關閉為json模式,一般不開啟
  • optimizer_trace_features:跟蹤信息中可列印的項,一般不調整預設列印所有項
  • optimizer_trace_limit:存儲的跟蹤sql條數
  • optimizer_trace_offset:開始記錄的sql語句的偏移量,負數表示從最近執行倒數第幾條開始記錄
  • optimizer_trace_max_mem_size:optimizer_trace記憶體的大小,如果跟蹤信息超過這個大小,信息將會被截斷

optimizer_trace表信息:

該表總共有4個欄位

  • QUERY 表示我們的查詢語句。
  • TRACE 表示優化過程的JSON格式文本。(重點關註)
  • MISSING_BYTES_BEYOND_MAX_MEM_SIZE 由於優化過程可能會輸出很多,如果超過某個限制時,多餘的文本將不會被顯示,這個欄位展示了被忽略的文本位元組數。
  • INSUFFICIENT_PRIVILEGES 表示是否沒有許可權查看優化過程,預設值是0,只有某些特殊情況下才會是 1,我們暫時不關心這個欄位的值。

信息解讀:

通過 optimizer_trace表的query欄位可以看到,一條語句的執行過程主要分為三個步驟:

"join_preparation": {},(準備階段)
"join_optimization": {},(優化階段)
"join_execution": {},(執行階段)

各個步驟的詳細內容解讀:

  • preparation:
expanded_query :將語句進行格式化,補充隱藏的列名和表名等
transformations_to_nested_joins :查詢重寫,比如join的on改為where語句
  • optimization:
condition_processing{ :條件句處理。
    transformation{:轉換類型句。這三次的轉換分別是
        equality_propagation(等值條件句轉換),如:a = b and b = c and c = 5
        constant_propagation(常量條件句轉換),如:a = 1 AND b > a
        trivial_condition_removal(無效條件移除的轉換),如:1 = 1
    }
}
substitute_generated_columns :替換虛擬生成列,測試了很多sql,這一列都沒有看到有用的信息
table_dependencies :梳理表之間的依賴關係。
ref_optimizer_key_uses :如果優化器認為查詢可以使用ref的話,在這裡列出可以使用的索引。
rows_estimation{ :估算表行數和掃描的代價。如果查詢中存在range掃描的話,對range掃描進行計劃分析及代價估算。
  table_scan:全表掃描的行數(rows)以及所需要的代價(cost)。
  potential_range_indexes:該階段會列出表中所有的索引並分析其是否可用,並且還會列出索引中可用的列欄位。
  analyzing_range_alternatives :分析可選方案的代價。
}
considered_execution_plans{ :對比各可行計劃的代價,選擇相對最優的執行計劃。
  plan_prefix:前置的執行計劃。
  best_access_path:當前最優的執行順序信息結果集。
  access_type表示使用索引的方式,可參照為explain中的type欄位。
  condition_filtering_pct:類似於explain中的filtered列,這是一個估算值。
  rows_for_plan:該執行計劃最終的掃描行數,這裡的行數其實也是估算值,是由considered_access_paths的resulting_rows相乘之後再乘以condition_filtering_pct獲得。
  cost_for_plan:該執行計劃的執行代價,由considered_access_paths的cost相加而得。
  chosen:是否選擇了該執行計劃。
}
attaching_conditions_to_tables :添加附加條件,使得條件儘可能篩選單表數據。
refine_plan :優化後的執行計劃。

trace信息中的json信息很長,因為我們關心的是不同執行計劃的cost區別,所以只需要重點關註兩個部分rows_estimation 和considered_execution_plans

代價模型計算:

統計信息和cost計算參數:

計算cost會涉及到表的主鍵索引數據頁(聚簇索引)數量和表中的記錄數,兩個信息都可以通過innodb的表統計信息mysql.innodb_table_stats查到,n_rows是記錄數,clustered_index_size是聚簇索引頁數。

mysql> select * from mysql.innodb_table_stats where table_name='basic_person_info';
+---------------+-------------------+---------------------+--------+----------------------+--------------------------+
| database_name | table_name        | last_update         | n_rows | clustered_index_size | sum_of_other_index_sizes |
+---------------+-------------------+---------------------+--------+----------------------+--------------------------+
| test          | basic_person_info | 2022-12-23 18:27:24 |  86632 |                  737 |                     1401 |
+---------------+-------------------+---------------------+--------+----------------------+--------------------------+
1 row in set (0.01 sec)

代價模型將操作分為Server層和Engine(存儲引擎)層兩類,Server層主要是CPU代價,Engine層主要是IO代價,比如MySQL從磁碟讀取一個數據頁的代價io_block_read_cost為1,從buffer pool讀取的代價memory_block_read_cost為0.25,計算符合條件的行代價為row_evaluate_cost為0.1,除此之外還有:

  • memory_temptable_create_cost (default 1.0) 記憶體臨時表的創建代價。
  • memory_temptable_row_cost (default 0.1) 記憶體臨時表的行代價。
  • key_compare_cost (default 0.1) 鍵比較的代價,例如排序。
  • disk_temptable_create_cost (default 20.0) 內部myisam或innodb臨時表的創建代價。
  • disk_temptable_row_cost (default 0.5) 內部myisam或innodb臨時表的行代價。

這些都可以通過mysql.server_cost、mysql.engine_cost查看defalt值和設置值

mysql> select * from mysql.server_cost;
+------------------------------+------------+---------------------+---------+---------------+
| cost_name                    | cost_value | last_update         | comment | default_value |
+------------------------------+------------+---------------------+---------+---------------+
| disk_temptable_create_cost   |       NULL | 2022-05-11 16:09:37 | NULL    |            20 |
| disk_temptable_row_cost      |       NULL | 2022-05-11 16:09:37 | NULL    |           0.5 |
| key_compare_cost             |       NULL | 2022-05-11 16:09:37 | NULL    |          0.05 |
| memory_temptable_create_cost |       NULL | 2022-05-11 16:09:37 | NULL    |             1 |
| memory_temptable_row_cost    |       NULL | 2022-05-11 16:09:37 | NULL    |           0.1 |
| row_evaluate_cost            |       NULL | 2022-05-11 16:09:37 | NULL    |           0.1 |
+------------------------------+------------+---------------------+---------+---------------+
mysql> select * from mysql.engine_cost;
+-------------+-------------+------------------------+------------+---------------------+---------+---------------+
| engine_name | device_type | cost_name              | cost_value | last_update         | comment | default_value |
+-------------+-------------+------------------------+------------+---------------------+---------+---------------+
| default     |           0 | io_block_read_cost     |       NULL | 2022-05-11 16:09:37 | NULL    |             1 |
| default     |           0 | memory_block_read_cost |       NULL | 2023-01-09 11:17:39 | NULL    |          0.25 |
+-------------+-------------+------------------------+------------+---------------------+---------+---------------+

計算公式:

如上面介紹的一樣,代價模型將操作分為兩類io_cost和cpu_cost,io_cost+cpu_cost就是總的cost,下麵是具體的計算方法:

全表掃描:

全表掃描成本 = io_cost + 1.1 + cpu_cost + 1 (io_cost +1.1和cpu_cost +1在代碼里是直接硬加上的,不知道為什麼,計算的時候直接加上)

io_cost = clustered_index_size (統計信息中的主鍵頁數) * avg_single_page_cost(讀取一個頁的平均成本)

avg_single_page_cost = pages_in_memory_percent * 0.25(memory_block_read_cost) + pages_on_disk_percent * 1.0(io_block_read_cost)

pages_in_memory_percent 表示已經載入到 Buffer Pool 中的葉結點占所有葉結點的比例 pages_on_disk_percent 表示沒有載入到 Buffer Pool 中的葉結點占所有葉結點的比例

所以當數據已經全部讀取到buffer pool中的時候:

io_cost=clustered_index_size * 0.25

都沒有讀取到buffer pool中的時候:

io_cost=clustered_index_size * 1.0

當部分數據在buffer pool中,部分數據需要從磁碟讀取時,這時的繫數介於0.25到1之間

cpu_cost = n_rows(統計信息中記錄數) * 0.1(row_evaluate_cost)

走索引的成本:

和全表掃描的計算方法類似,其中io_cost與搜索的區間數有關,比如掃描三個區間where a between 1 and 10 or a between 20 and 30 or a between 40 and 50,此時:

io_cost=3 * avg_single_page_cost

cpu_cost=記錄數 * 0.1(row_evaluate_cost)+0.01(代碼中的微調參數)

針對二級索引還會有回表的操作:

MySQL認為每次回表都相當於是訪問一個頁面,所以每次回表都會進行一次IO,這部分成本:

io_cost=rows(記錄數)*avg_single_page_cost

對回表查詢的數據還需要進行一次計算:

cpu_cost=rows(記錄數) * 0.1(row_evaluate_cost)(需要註意的是當索引需要回表掃描時,在rows_estimation階段並不會計算這個值,在considered_execution_plans階段會重新加上這部分成本)

所以針對需要回表的查詢:

io_cost=查詢區間 * avg_single_page_cost + rows(記錄數) * avg_single_page_cost

cpu_cost=記錄數 * 0.1(row_evaluate_cost) + 0.01(代碼中的微調參數) + rows(記錄數) * 0.1(row_evaluate_cost)

例子:

mysql> set optimizer_trace='enabled=on';
Query OK, 0 rows affected (0.00 sec)

mysql>explain select * from basic_person_info t1 join basic_person_info2 t2 on t1.id_num=t2.id_num where t1.age >10 and t2.age<20;
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+
| id | select_type | table | partitions | type   | possible_keys                        | key           | key_len | ref            | rows | filtered | Extra                 |
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+
|  1 | SIMPLE      | t2    | NULL       | range  | id_num_unique,idx_age,idx_age_id_num | idx_age       | 1       | NULL           | 9594 |   100.00 | Using index condition |
|  1 | SIMPLE      | t1    | NULL       | eq_ref | id_num_unique,idx_age                | id_num_unique | 60      | test.t2.id_num |    1 |    50.00 | Using where           |
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+
2 rows in set, 1 warning (0.04 sec)

查看optimizer_trace的內容

select * from basic_person_info t1 join basic_person_info2 t2 on t1.id_num=t2.id_num where t1.age >10 and t2.age<20 | {
  "steps": [
    {
      "join_preparation": {
        "select#": 1,
        "steps": [
          {
            "expanded_query": "/* select#1 */ select `t1`.`id` AS `id`,`t1`.`id_num` AS `id_num`,`t1`.`lastname` AS `lastname`,`t1`.`firstname` AS `firstname`,`t1`.`mobile` AS `mobile`,`t1`.`sex` AS `sex`,`t1`.`birthday` AS `birthday`,`t1`.`age` AS `age`,`t1`.`top_education` AS `top_education`,`t1`.`address` AS `address`,`t1`.`income_by_year` AS `income_by_year`,`t1`.`create_time` AS `create_time`,`t1`.`update_time` AS `update_time`,`t2`.`id` AS `id`,`t2`.`id_num` AS `id_num`,`t2`.`lastname` AS `lastname`,`t2`.`firstname` AS `firstname`,`t2`.`mobile` AS `mobile`,`t2`.`sex` AS `sex`,`t2`.`birthday` AS `birthday`,`t2`.`age` AS `age`,`t2`.`top_education` AS `top_education`,`t2`.`address` AS `address`,`t2`.`income_by_year` AS `income_by_year`,`t2`.`create_time` AS `create_time`,`t2`.`update_time` AS `update_time` from (`basic_person_info` `t1` join `basic_person_info2` `t2` on((`t1`.`id_num` = `t2`.`id_num`))) where ((`t1`.`age` > 10) and (`t2`.`age` < 20))"
          },
          {
            "transformations_to_nested_joins": {
              "transformations": [
                "JOIN_condition_to_WHERE",
                "parenthesis_removal"
              ],
              "expanded_query": "/* select#1 */ select `t1`.`id` AS `id`,`t1`.`id_num` AS `id_num`,`t1`.`lastname` AS `lastname`,`t1`.`firstname` AS `firstname`,`t1`.`mobile` AS `mobile`,`t1`.`sex` AS `sex`,`t1`.`birthday` AS `birthday`,`t1`.`age` AS `age`,`t1`.`top_education` AS `top_education`,`t1`.`address` AS `address`,`t1`.`income_by_year` AS `income_by_year`,`t1`.`create_time` AS `create_time`,`t1`.`update_time` AS `update_time`,`t2`.`id` AS `id`,`t2`.`id_num` AS `id_num`,`t2`.`lastname` AS `lastname`,`t2`.`firstname` AS `firstname`,`t2`.`mobile` AS `mobile`,`t2`.`sex` AS `sex`,`t2`.`birthday` AS `birthday`,`t2`.`age` AS `age`,`t2`.`top_education` AS `top_education`,`t2`.`address` AS `address`,`t2`.`income_by_year` AS `income_by_year`,`t2`.`create_time` AS `create_time`,`t2`.`update_time` AS `update_time` from `basic_person_info` `t1` join `basic_person_info2` `t2` where ((`t1`.`age` > 10) and (`t2`.`age` < 20) and (`t1`.`id_num` = `t2`.`id_num`))"
            }
          }
        ]
      }
    },
    {
      "join_optimization": {
        "select#": 1,
        "steps": [
          {
            "condition_processing": {
              "condition": "WHERE",
              "original_condition": "((`t1`.`age` > 10) and (`t2`.`age` < 20) and (`t1`.`id_num` = `t2`.`id_num`))",
              "steps": [
                {
                  "transformation": "equality_propagation",
                  "resulting_condition": "((`t1`.`age` > 10) and (`t2`.`age` < 20) and multiple equal(`t1`.`id_num`, `t2`.`id_num`))"
                },
                {
                  "transformation": "constant_propagation",
                  "resulting_condition": "((`t1`.`age` > 10) and (`t2`.`age` < 20) and multiple equal(`t1`.`id_num`, `t2`.`id_num`))"
                },
                {
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "((`t1`.`age` > 10) and (`t2`.`age` < 20) and multiple equal(`t1`.`id_num`, `t2`.`id_num`))"
                }
              ]
            }
          },
          {
            "substitute_generated_columns": {
            }
          },
          {
            "table_dependencies": [
              {
                "table": "`basic_person_info` `t1`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ]
              },
              {
                "table": "`basic_person_info2` `t2`",
                "row_may_be_null": false,
                "map_bit": 1,
                "depends_on_map_bits": [
                ]
              }
            ]
          },
          {
            "ref_optimizer_key_uses": [
              {
                "table": "`basic_person_info` `t1`",
                "field": "id_num",
                "equals": "`t2`.`id_num`",
                "null_rejecting": true
              },
              {
                "table": "`basic_person_info2` `t2`",
                "field": "id_num",
                "equals": "`t1`.`id_num`",
                "null_rejecting": true
              }
            ]
          },
          {
            "rows_estimation": [
              {
                "table": "`basic_person_info` `t1`",
                "range_analysis": {
                  "table_scan": {
                    "rows": 86734,
                    "cost": 8859.75
                    
                    t1表的scan成本=聚簇索引頁數*0.25 + 行數 * 0.1 +1.1+1
                    737*0.25+1.1+86734*0.1+1=8859.75
                    
                  },
                  "potential_range_indexes": [
                    {
                      "index": "PRIMARY",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "id_num_unique",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "mobile_unique",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_basic_person_info_name",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_basic_person_info_top_education",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_basic_person_info_create_time",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_basic_person_info_mobile",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_age",
                      "usable": true,
                      "key_parts": [
                        "age",
                        "id"
                      ]
                    }
                  ],
                  "setup_range_conditions": [
                  ],
                  "group_index_range": {
                    "chosen": false,
                    "cause": "not_single_table"
                  },
                  "skip_scan_range": {
                    "chosen": false,
                    "cause": "not_single_table"
                  },
                  "analyzing_range_alternatives": {
                    "range_scan_alternatives": [
                      {
                        "index": "idx_age",
                        "ranges": [
                          "10 < age"
                        ],
                        "index_dives_for_eq_ranges": true,
                        "rowid_ordered": false,
                        "using_mrr": false,
                        "index_only": false,
                        "rows": 43367,
                        "cost": 15178.7,
                        
                        通過索引idx_age讀取數據:
                        io_cost=區間數* 0.25 +記錄數* 0.25
                        io_cost=1*0.25+43367*0.25=10,842  
                        cpu_cost=記錄數* 0.1 (沒有回表的cost)
                        cpu_cost=43367*0.1=4,336.7 
                        cost=10842+4,336.7=15178.7
                        
                        "chosen": false,
                        "cause": "cost"
                      }
                    ],
                    "analyzing_roworder_intersect": {
                      "usable": false,
                      "cause": "too_few_roworder_scans"
                    }
                  }
                }
              },
              {
                "table": "`basic_person_info2` `t2`",
                "range_analysis": {
                  "table_scan": {
                    "rows": 73845,
                    "cost": 7538.85
                    
                    t2表的scan成本=聚簇索引頁數*0.25 + 行數 * 0.1 +1.1+1
                    609*0.25+1+73845*0.1+1.1=7538.85
                    
                  },
                  "potential_range_indexes": [
                    {
                      "index": "PRIMARY",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "id_num_unique",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "mobile_unique",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_basic_person_info_name",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_basic_person_info_top_education",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_basic_person_info_create_time",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_basic_person_info_mobile",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_age",
                      "usable": true,
                      "key_parts": [
                        "age",
                        "id"
                      ]
                    },
                    {
                      "index": "idx_age_id_num",
                      "usable": true,
                      "key_parts": [
                        "age",
                        "id_num",
                        "id"
                      ]
                    }
                  ],
                  "setup_range_conditions": [
                  ],
                  "group_index_range": {
                    "chosen": false,
                    "cause": "not_single_table"
                  },
                  "skip_scan_range": {
                    "chosen": false,
                    "cause": "not_single_table"
                  },
                  "analyzing_range_alternatives": {
                    "range_scan_alternatives": [
                      {
                        "index": "idx_age",
                        "ranges": [
                          "age < 20"
                        ],
                        "index_dives_for_eq_ranges": true,
                        "rowid_ordered": false,
                        "using_mrr": false,
                        "index_only": false,
                        "rows": 9594,
                        "cost": 3358.16,
                        
                        通過索引idx_age讀取數據:
                        io_cost=區間數* 0.25 +記錄數* 0.25
                        io_cost=1*0.25+9594*0.25=2,398.75        
                        cpu_cost=記錄數* 0.1   (沒有回表的cost) 
                        cpu_cost=9594*0.1959.4  
                        cost=2,398.75+959.4=3,358.15
                        
                        "chosen": true
                      },
                      {
                        "index": "idx_age_id_num",
                        "ranges": [
                          "age < 20"
                        ],
                        "index_dives_for_eq_ranges": true,
                        "rowid_ordered": false,
                        "using_mrr": false,
                        "index_only": false,
                        "rows": 19086,
                        "cost": 6680.36,
                        
                        通過索引idx_age_id_num讀取數據:
                        io_cost=區間數* 0.25 +記錄數* 0.25
                        io_cost=1*0.25+19086*0.25=4,771.75           
                        cpu_cost=記錄數* 0.1  (沒有回表的cost)  
                        cpu_cost=19086*0.1=1908.6
                        cost=4,771.75+1908.6=6,680.35
                        
                        "chosen": false,
                        "cause": "cost"
                      }
                    ],
                    "analyzing_roworder_intersect": {
                      "usable": false,
                      "cause": "too_few_roworder_scans"
                    }
                  },
                  "chosen_range_access_summary": {
                    "range_access_plan": {
                      "type": "range_scan",
                      "index": "idx_age",
                      "rows": 9594,
                      "ranges": [
                        "age < 20"
                      ]
                    },
                    "rows_for_plan": 9594,
                    "cost_for_plan": 3358.16,
                    "chosen": true
                  }
                }
              }
            ]
          },
          {
            "considered_execution_plans": [
              {
                "plan_prefix": [
                ],
                "table": "`basic_person_info2` `t2`",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                      "access_type": "ref",
                      "index": "id_num_unique",
                      "usable": false,
                      "chosen": false
                    },
                    {
                      "rows_to_scan": 9594,
                      "filtering_effect": [
                      ],
                      "final_filtering_effect": 1,
                      "access_type": "range",
                      "range_details": {
                        "used_index": "idx_age"
                      },
                      "resulting_rows": 9594,
                      "cost": 4317.56,
                      
                        通過索引idx_age讀取數據:
                        io_cost=區間數* 0.25 +記錄數* 0.25
                        io_cost=1*0.25+9594*0.25=2,398.75        
                        cpu_cost=記錄數* 0.1 + 記錄數* 0.1   
                        cpu_cost=9594*0.1*2=1,918.8  
                        cost=2,398.75+1,918.8=4317.56
                      
                      "chosen": true
                    }
                  ]
                },
                "condition_filtering_pct": 100,
                "rows_for_plan": 9594,
                "cost_for_plan": 4317.56,
                "rest_of_plan": [
                  {
                    "plan_prefix": [
                      "`basic_person_info2` `t2`"
                    ],
                    "table": "`basic_person_info` `t1`",
                    "best_access_path": {
                      "considered_access_paths": [
                        {
                          "access_type": "eq_ref",
                          "index": "id_num_unique",
                          "rows": 1,
                          "cost": 3357.9,
                          
                          io_cost=t2表記錄數*0.25=9594*0.25=2398.5
                          cpu_cost=記錄數*0.1=9594*0.1=959.4
                          cost=2398.5+959.4=3357.9
                          
                          "chosen": true
                        },
                        {
                          "rows_to_scan": 86734,
                          "filtering_effect": [
                          ],
                          "final_filtering_effect": 0.5,
                          "access_type": "scan",
                          "using_join_cache": true,
                          "buffers_needed": 14,
                          "resulting_rows": 43367,
                          "cost": 4.16701e+07,
                          "chosen": false
                        }
                      ]
                    },
                    "condition_filtering_pct": 100,
                    "rows_for_plan": 9594,
                    "cost_for_plan": 7675.46,
                    
                   總cost=4,317.56+3,357.9=7,675.46
                   
                    "chosen": true
                  }
                ]
              },
              {
                "plan_prefix": [
                ],
                "table": "`basic_person_info` `t1`",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                      "access_type": "ref",
                      "index": "id_num_unique",
                      "usable": false,
                      "chosen": false
                    },
                    {
                      "rows_to_scan": 86734,
                      "filtering_effect": [
                      ],
                      "final_filtering_effect": 0.5,
                      "access_type": "scan",
                      "resulting_rows": 43367,
                      "cost": 8857.65,
                      
                      t1的scan成本
                      
                      "chosen": true
                    }
                  ]
                },
                "condition_filtering_pct": 100,
                "rows_for_plan": 43367,
                "cost_for_plan": 8857.65,
                "pruned_by_cost": true
                
                放棄後續的計算
                
              }
            ]
          },
          {
            "attaching_conditions_to_tables": {
              "original_condition": "((`t1`.`id_num` = `t2`.`id_num`) and (`t1`.`age` > 10) and (`t2`.`age` < 20))",
              "attached_conditions_computation": [
              ],
              "attached_conditions_summary": [
                {
                  "table": "`basic_person_info2` `t2`",
                  "attached": "(`t2`.`age` < 20)"
                },
                {
                  "table": "`basic_person_info` `t1`",
                  "attached": "((`t1`.`id_num` = `t2`.`id_num`) and (`t1`.`age` > 10))"
                }
              ]
            }
          },
          {
            "finalizing_table_conditions": [
              {
                "table": "`basic_person_info2` `t2`",
                "original_table_condition": "(`t2`.`age` < 20)",
                "final_table_condition   ": "(`t2`.`age` < 20)"
              },
              {
                "table": "`basic_person_info` `t1`",
                "original_table_condition": "((`t1`.`id_num` = `t2`.`id_num`) and (`t1`.`age` > 10))",
                "final_table_condition   ": "(`t1`.`age` > 10)"
              }
            ]
          },
          {
            "refine_plan": [
              {
                "table": "`basic_person_info2` `t2`",
                "pushed_index_condition": "(`t2`.`age` < 20)",
                "table_condition_attached": null
              },
              {
                "table": "`basic_person_info` `t1`"
              }
            ]
          }
        ]
      }
    },
    {
      "join_execution": {
        "select#": 1,
        "steps": [
        ]
      }
    }
  ]
}

成本常數修改:

前面已經介紹了成本常量值實際上存放在MySQL自帶的系統庫MySQL中的server_cost和engine_cost表中,其中server_cost表存放server層的成本常量,engine_cost表存放engine層成本常量

mysql> select * from mysql.server_cost;
+------------------------------+------------+---------------------+---------+---------------+
| cost_name                    | cost_value | last_update         | comment | default_value |
+------------------------------+------------+---------------------+---------+---------------+
| disk_temptable_create_cost   |       NULL | 2022-05-11 16:09:37 | NULL    |            20 |
| disk_temptable_row_cost      |       NULL | 2022-05-11 16:09:37 | NULL    |           0.5 |
| key_compare_cost             |       NULL | 2022-05-11 16:09:37 | NULL    |          0.05 |
| memory_temptable_create_cost |       NULL | 2022-05-11 16:09:37 | NULL    |             1 |
| memory_temptable_row_cost    |       NULL | 2022-05-11 16:09:37 | NULL    |           0.1 |
| row_evaluate_cost            |       NULL | 2022-05-11 16:09:37 | NULL    |           0.1 |
+------------------------------+------------+---------------------+---------+---------------+

mysql> select * from mysql.engine_cost;
+-------------+-------------+------------------------+------------+---------------------+---------+---------------+
| engine_name | device_type | cost_name              | cost_value | last_update         | comment | default_value |
+-------------+-------------+------------------------+------------+---------------------+---------+---------------+
| default     |           0 | io_block_read_cost     |       NULL | 2022-05-11 16:09:37 | NULL    |             1 |
| default     |           0 | memory_block_read_cost |       NULL | 2023-01-09 11:17:39 | NULL    |          0.25 |
+-------------+-------------+------------------------+------------+---------------------+---------+---------------+

其中 default_value的值是系統預設的,不能修改,cost_value列的值我們可以修改,如果cost_value列的值不為空系統將用該值覆蓋預設值,我們可以通過update語句來修改

mysql> update mysql.engine_cost set cost_value=10 where cost_name='memory_block_read_cost';
Query OK, 0 rows affected (0.00 sec)
mysql> update mysql.engine_cost set cost_value=10 where cost_name='io_block_read_cost';
Query OK, 0 rows affected (0.00 sec)

很多資料都說執行flush optimizer_costs就可以生效,不過我在修改完後並執行flush optimizer_costs並不能馬上生效,最後是通過重啟資料庫實例才生效,這個可能是資料庫版本的差異,大家可以自行驗證。

mysql> explain select * from basic_person_info t1 join basic_person_info2 t2 on t1.id_num=t2.id_num where t1.age >10 and t2.age<20;
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+-------+----------+-------------+
| id | select_type | table | partitions | type   | possible_keys                        | key           | key_len | ref            | rows  | filtered | Extra       |
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+-------+----------+-------------+
|  1 | SIMPLE      | t2    | NULL       | ALL    | id_num_unique,idx_age,idx_age_id_num | NULL          | NULL    | NULL           | 73990 |    12.97 | Using where |
|  1 | SIMPLE      | t1    | NULL       | eq_ref | id_num_unique,idx_age                | id_num_unique | 60      | test.t2.id_num |     1 |    50.00 | Using where |
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+-------+----------+-------------+

"table": "`basic_person_info2` `t2`",
                "range_analysis": {
                  "table_scan": {
                    "rows": 73990,
                    "cost": 13491.1
                   
                   全表掃描cost=609*10+73990*0.1+1.1+1= 13491.1
                   
                  },
"index": "idx_age",
                        "ranges": [
                          "age < 20"
                        ],
                        "index_dives_for_eq_ranges": true,
                        "rowid_ordered": false,
                        "using_mrr": false,
                        "index_only": false,
                        "rows": 9594,
                        "cost": 96909.4,
                        
                        idx_age索引掃描cost=1*10+9594*10+9594*0.1=96,909.4
                        
                        "chosen": false,
                        "cause": "cost"
                      },

修改後的執行計劃,發現t2表走了全表掃描了而沒有走idx_age索引,分別查看一下t2表走全表掃描和idx_age索引的cost發現全表掃描的cost為13491.1,而走索引的cost為96,909.4,因為全表掃描的cost比走索引低,所以優化器沒有選擇idx_age索引。

從這個例子可以看出,更改成本常量值會直接影響優化器的方案選擇,所以一定要慎重,沒有特殊原因建議不要修改。

explain format=json

雖然通過optimizer_trace可以看到很多詳細的優化器選擇過程,但是使用起來起來還是比較麻煩,需要過濾的信息很多,這時explain format=json輸出json格式的分析數據也是一個不錯的選擇,它也包含語句將要執行的成本信息,如下:

query_cost  總查詢成本
read_cost   IO成本+除 eval_cost以外cpu成本
eval_cost   檢測rows * filter條記錄的成本
prefix_cost 單次查詢的成本,等於read_cost+eval_cost
mysql> explain format=json select * from basic_person_info t1 join basic_person_info2 t2 on t1.id_num=t2.id_num where t1.age >10 and t2.age<20;
{
  "query_block": {
    "select_id": 1,
    "cost_info": {
      "query_cost": "7675.46"
    },
    "nested_loop": [
      {
        "table": {
          "table_name": "t2",
          "access_type": "range",
          "possible_keys": [
            "id_num_unique",
            "idx_age",
            "idx_age_id_num"
          ],
          "key": "idx_age",
          "used_key_parts": [
            "age"
          ],
          "key_length": "1",
          "rows_examined_per_scan": 9594,
          "rows_produced_per_join": 9594,
          "filtered": "100.00",
          "index_condition": "(`test`.`t2`.`age` < 20)",
          "cost_info": {
            "read_cost": "3358.16",
            包含所有io成本+(cpu成本-eval_cost)
            "eval_cost": "959.40",
            計算扇出的cpu成本,優化器利用啟髮式規則估算出滿足所有條件的的比例(filtered)
            =rows_examined_per_scan*filtered*0.1
            "prefix_cost": "4317.56",
            單表查詢的總成本
            
            "data_read_per_join": "3M"
          },
          "used_columns": [
            "id",
            "id_num",
            "lastname",
            "firstname",
            "mobile",
            "sex",
            "birthday",
            "age",
            "top_education",
            "address",
            "income_by_year",
            "create_time",
            "update_time"
          ]
        }
      },
      {
        "table": {
          "table_name": "t1",
          "access_type": "eq_ref",
          "possible_keys": [
            "id_num_unique",
            "idx_age"
          ],
          "key": "id_num_unique",
          "used_key_parts": [
            "id_num"
          ],
          "key_length": "60",
          "ref": [
            "test.t2.id_num"
          ],
          "rows_examined_per_scan": 1,
          "rows_produced_per_join": 4797,
          "filtered": "50.00",
          "cost_info": {
            "read_cost": "2398.50",
            包含所有io成本+(cpu成本-eval_cost)
            "eval_cost": "479.70",
            計算扇出的cpu成本,優化器利用啟髮式規則估算出滿足所有條件的的比例(filtered)
            =rows_examined_per_scan*filtered*0.1
            "prefix_cost": "7675.46",
            兩表查詢的總cost
            "data_read_per_join": "1M"
          },
          "used_columns": [
            "id",
            "id_num",
            "lastname",
            "firstname",
            "mobile",
            "sex",
            "birthday",
            "age",
            "top_education",
            "address",
            "income_by_year",
            "create_time",
            "update_time"
          ],
          "attached_condition": "(`test`.`t1`.`age` > 10)"
        }
      }
    ]
  }
}

另外,explain結合show warnings語句一起使用還可以得知優化器改寫後的語句

mysql> show warnings;
+-------+------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Level | Code | Message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
+-------+------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Note  | 1003 | /* select#1 */ select `test`.`t1`.`id` AS `id`,`test`.`t1`.`id_num` AS `id_num`,`test`.`t1`.`lastname` AS `lastname`,`test`.`t1`.`firstname` AS `firstname`,`test`.`t1`.`mobile` AS `mobile`,`test`.`t1`.`sex` AS `sex`,`test`.`t1`.`birthday` AS `birthday`,`test`.`t1`.`age` AS `age`,`test`.`t1`.`top_education` AS `top_education`,`test`.`t1`.`address` AS `address`,`test`.`t1`.`income_by_year` AS `income_by_year`,`test`.`t1`.`create_time` AS `create_time`,`test`.`t1`.`update_time` AS `update_time`,`test`.`t2`.`id` AS `id`,`test`.`t2`.`id_num` AS `id_num`,`test`.`t2`.`lastname` AS `lastname`,`test`.`t2`.`firstname` AS `firstname`,`test`.`t2`.`mobile` AS `mobile`,`test`.`t2`.`sex` AS `sex`,`test`.`t2`.`birthday` AS `birthday`,`test`.`t2`.`age` AS `age`,`test`.`t2`.`top_education` AS `top_education`,`test`.`t2`.`address` AS `address`,`test`.`t2`.`income_by_year` AS `income_by_year`,`test`.`t2`.`create_time` AS `create_time`,`test`.`t2`.`update_time` AS `update_time` from `test`.`basic_person_info` `t1` join `test`.`basic_person_info2` `t2` where ((`test`.`t1`.`id_num` = `test`.`t2`.`id_num`) and (`test`.`t1`.`age` > 10) and (`test`.`t2`.`age` < 20)) |
+-------+------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)

總結:

  • MySQL的優化器是基於成本來選擇最優執行方案的,哪個成本最少就選哪個,所以重點在於計算出各個執行計劃的cost
  • 成本由CPU成本和IO成本組成,每個成本常數值可以自己調整,非必要的情況下不要調整,以免影響整個資料庫的執行計劃選擇
  • 通過開啟optimizer_trace可以跟蹤優化器的各個環節的分析步驟,可以判斷有時候為什麼沒有走索引而走了全表掃描
  • explain加上format=json選項後可以查看成本信息分為read_cost和eval_cost,但只能看到當前已經選擇的執行計劃,另外通過show warnings可以看到優化器改寫後的語句

Enjoy GreatSQL

您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 編譯安裝 HAProxy 新版 LTS 版本,編譯安裝 Keepalived 開啟HAProxy多線程,線程數與CPU核心數保持一致,並綁定CPU核心 因業務較多避免配置文件誤操作,需要按每業務一個配置文件並統一保存至/etc/haproxy/conf.d目錄中 基於ACL實現單IP多功能變數名稱負載功能, ...
  • 一、 activebackup - 主備模式 一個網卡處於活動狀態,另一個處於備份狀態,所有流量都在主鏈路上處理,當活動網卡down掉時,啟用備份網卡。 實驗環境VMware虛擬機; 這裡我要實現雙網卡綁定主備模式,並且當主卡故障恢復後,活動埠自動切回主卡(調整prio優先順序實現),如果不加優先順序 ...
  • 唯一的標識一個設備是一個基本功能,可以擁有很多應用場景,比如軟體授權(如何保證你的軟體在授權後才能在特定機器上使用)、軟體 License,設備標識,設備身份識別等。 ...
  • 摘要:本期文章採用了4G LTE Cat.1模塊,編程語言用的是lua,實現對華為雲物聯網平臺的設備通信與控制 本文分享自華為雲社區《基於luatos的4G(LTE Cat.1)模組接入華為雲物聯網平臺完成設備通信與控制(Air780e)》,作者:中華小能能。 一、簡介 1、項目介紹 本期文章採用了 ...
  • 1 時間日期指令 1.1 date date 顯示當前時間 date +%Y 顯示當前年份 date +%m 顯示當前月份 date +%d 顯示今天 date "+%Y -%m-%d %H:%M:%S" 顯示年月日時分秒 date -s "2023-03-03 03:03:03" 設置時間為202 ...
  • Ubuntu 18.04.6 server LTS 安裝 對比Ubuntu18.04.2,Ubuntu18.04.6以後的版本安裝頁面都採用的新頁面 1、第一行安裝Ubuntu 2、語言選English;鍵盤佈局選English(US)美式英語 3、暫時不配置網路,continue 4、代理;鏡像源 ...
  • Win32纖程是一種輕量級的協程機制,它能夠在同一個線程中實現多個線程執行的效果,從而提高了程式的併發性和可伸縮性。 在C++中,可以使用Win32 API中的fiber來實現纖程。以下是一個使用纖程的示例代碼: #include <Windows.h> void CALLBACK FiberFun ...
  • 今天鹹魚給大家分享幾個不錯的 Linux 運維腳本,這些腳本中大量使用了 Linux 的文本三劍客: 1. awk 2. grep 3. sed 建議大家這三個工具都要瞭解並最好能夠較為熟練的使用 根據 PID 顯示進程所有信息 根據用戶輸入的 PID,過濾出該 PID 所有的信息 #! /bin/ ...
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...