跟我學Python丨圖像增強及運算:局部直方圖均衡化和自動色彩均衡化處理

来源:https://www.cnblogs.com/huaweiyun/archive/2023/01/17/17057970.html
-Advertisement-
Play Games

摘要:本文主要講解圖像局部直方圖均衡化和自動色彩均衡化處理。這些演算法可以廣泛應用於圖像增強、圖像去噪、圖像去霧等領域。 本文分享自華為雲社區《[Python從零到壹] 五十四.圖像增強及運算篇之局部直方圖均衡化和自動色彩均衡化處理》,作者: eastmount。 一.局部直方圖均衡化 前文通過調用O ...


摘要:本文主要講解圖像局部直方圖均衡化和自動色彩均衡化處理。這些演算法可以廣泛應用於圖像增強、圖像去噪、圖像去霧等領域。

本文分享自華為雲社區《[Python從零到壹] 五十四.圖像增強及運算篇之局部直方圖均衡化和自動色彩均衡化處理》,作者: eastmount。

一.局部直方圖均衡化

前文通過調用OpenCV中equalizeHist()函數實現直方圖均衡化處理,該方法簡單高效,但其實它是一種全局意義上的均衡化處理,很多時候這種操作不是很好,會把某些不該調整的部分給均衡處理了。同時,圖像中不同的區域灰度分佈相差甚遠,對它們使用同一種變換常常產生不理想的效果,實際應用中,常常需要增強圖像的某些局部區域的細節。

為瞭解決這類問題,Pizer等提出了局部直方圖均衡化的方法(AHE),但AHE方法僅僅考慮了局部區域的像素,忽略了圖像其他區域的像素,且對於圖像中相似區域具有過度放大雜訊的缺點。為此K. Zuiderveld等人提出了對比度受限CLAHE的圖像增強方法,通過限制局部直方圖的高度來限制局部對比度的增強幅度,從而限制雜訊的放大及局部對比度的過增強,該方法常用於圖像增強,也可以被用來進行圖像去霧操作[1-2]。

在OpenCV中,調用函數createCLAHE()實現對比度受限的局部直方圖均衡化。它將整個圖像分成許多小塊(比如按10×10作為一個小塊),那麼對每個小塊進行均衡化。這種方法主要對於圖像直方圖不是那麼單一的(比如存在多峰情況)圖像比較實用。其函數原型如下所示:

retval = createCLAHE([, clipLimit[, tileGridSize]])

  • clipLimit參數表示對比度的大小
  • tileGridSize參數表示每次處理塊的大小

調用createCLAHE()實現對比度受限的局部直方圖均衡化的代碼如下:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#讀取圖片
img = cv2.imread('lena.bmp')
#灰度轉換
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#局部直方圖均衡化處理
clahe = cv2.createCLAHE(clipLimit=2, tileGridSize=(10,10))
#將灰度圖像和局部直方圖相關聯, 把直方圖均衡化應用到灰度圖 
result = clahe.apply(gray)
#顯示圖像
plt.subplot(221)
plt.imshow(gray, cmap=plt.cm.gray), plt.axis("off"), plt.title('(a)') 
plt.subplot(222)
plt.imshow(result, cmap=plt.cm.gray), plt.axis("off"), plt.title('(b)') 
plt.subplot(223)
plt.hist(img.ravel(), 256), plt.title('(c)') 
plt.subplot(224)
plt.hist(result.ravel(), 256), plt.title('(d)') 
plt.show()

輸出結果如圖1所示,圖1(a)為原始圖像,對應的直方圖為圖1©,圖1(b)和圖1(d)為對比度受限的局部直方圖均衡化處理後的圖像及對應直方圖,它讓圖像的灰度值分佈更加均衡。可以看到,相對於全局的直方圖均衡化,這個局部的均衡化似乎得到的效果更自然一點。

二.自動色彩均衡化

Retinex演算法是代表性的圖像增強演算法,它根據人的視網膜和大腦皮層模擬對物體顏色的波長光線反射能力而形成,對複雜環境下的一維條碼具有一定範圍內的動態壓縮,對圖像邊緣有著一定自適應的增強。自動色彩均衡(Automatic Color Enhancement,ACE)演算法是在Retinex演算法的理論上提出的,它通過計算圖像目標像素點和周圍像素點的明暗程度及其關係來對最終的像素值進行校正,實現圖像的對比度調整,產生類似人體視網膜的色彩恆常性和亮度恆常性的均衡,具有很好的圖像增強效果[3-4]。

ACE演算法包括兩個步驟,一是對圖像進行色彩和空域調整,完成圖像的色差校正,得到空域重構圖像;二是對校正後的圖像進行動態擴展。ACE演算法計算公式如下:

其中,W是權重參數,離中心點像素越遠的W值越小;g是相對對比度調節參數,其計算方法如公式(22-2)所示,a表示控制參數,值越大細節增強越明顯。

圖2是條形碼圖像進行ACE圖像增強後的效果圖,通過圖像增強後的圖(b)對比度更強,改善了原圖像的明暗程度,增強的同時保持了圖像的真實性。

由於OpenCV中暫時沒有ACE演算法包,下麵的代碼是借鑒“zmshy2128”老師的文章,修改實現的彩色直方圖均衡化處理[5]。

# -*- coding: utf-8 -*-
# By:Eastmount
# 參考zmshy2128老師文章
import cv2
import numpy as np
import math
import matplotlib.pyplot as plt
#線性拉伸處理
#去掉最大最小0.5%的像素值 線性拉伸至[0,1]
def stretchImage(data, s=0.005, bins = 2000): 
 ht = np.histogram(data, bins);
    d = np.cumsum(ht[0])/float(data.size)
 lmin = 0; lmax=bins-1
 while lmin<bins:
 if d[lmin]>=s:
 break
 lmin+=1
 while lmax>=0:
 if d[lmax]<=1-s:
 break
 lmax-=1
 return np.clip((data-ht[1][lmin])/(ht[1][lmax]-ht[1][lmin]), 0,1)
#根據半徑計算權重參數矩陣
g_para = {}
def getPara(radius = 5): 
 global g_para
    m = g_para.get(radius, None)
 if m is not None:
 return m
    size = radius*2+1
    m = np.zeros((size, size))
 for h in range(-radius, radius+1):
 for w in range(-radius, radius+1):
 if h==0 and w==0:
 continue
 m[radius+h, radius+w] = 1.0/math.sqrt(h**2+w**2)
    m /= m.sum()
 g_para[radius] = m
 return m
#常規的ACE實現
def zmIce(I, ratio=4, radius=300): 
    para = getPara(radius)
 height,width = I.shape
 #Python3報錯如下 使用列表append修改
 zh = []
 zw = []
    n = 0
 while n < radius:
 zh.append(0)
 zw.append(0)
        n += 1
 for n in range(height):
 zh.append(n)
 for n in range(width):
 zw.append(n)
    n = 0
 while n < radius:
 zh.append(height-1)
 zw.append(width-1)
        n += 1
 #print(zh)
 #print(zw)
    Z = I[np.ix_(zh, zw)]
    res = np.zeros(I.shape)
 for h in range(radius*2+1):
 for w in range(radius*2+1):
 if para[h][w] == 0:
 continue
            res += (para[h][w] * np.clip((I-Z[h:h+height, w:w+width])*ratio, -1, 1))
 return res
#單通道ACE快速增強實現
def zmIceFast(I, ratio, radius):
 print(I)
    height, width = I.shape[:2]
 if min(height, width) <=2:
 return np.zeros(I.shape)+0.5
    Rs = cv2.resize(I, (int((width+1)/2), int((height+1)/2)))
    Rf = zmIceFast(Rs, ratio, radius) #遞歸調用
    Rf = cv2.resize(Rf, (width, height))
    Rs = cv2.resize(Rs, (width, height))
 return Rf+zmIce(I,ratio, radius)-zmIce(Rs,ratio,radius) 
#rgb三通道分別增強 ratio是對比度增強因數 radius是捲積模板半徑 
def zmIceColor(I, ratio=4, radius=3): 
    res = np.zeros(I.shape)
 for k in range(3):
        res[:,:,k] = stretchImage(zmIceFast(I[:,:,k], ratio, radius))
 return res
#主函數
if __name__ == '__main__':
 img = cv2.imread('test01.png')
    res = zmIceColor(img/255.0)*255
    cv2.imwrite('Ice.jpg', res)

運行結果如圖3和圖4所示,ACE演算法能有效進行圖像去霧處理,實現圖像的細節增強。

三.總結

本文主要講解圖像局部直方圖均衡化和自動色彩均衡化處理。這些演算法可以廣泛應用於圖像增強、圖像去噪、圖像去霧等領域。

 

點擊關註,第一時間瞭解華為雲新鮮技術~


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 下載jdk安裝包 進入Oracle官網進行下載:Java Downloads | Oracle 鏡像源也可以下載 為什麼配置環境變數 系統在運行命令和程式的時候先從當前目錄進行查找,找不到會去配置的環境變數裡面找 配置環境變數的目的是為了命令行在各個位置都能訪問 平時用IDEA集成開發工具不非得配置 ...
  • 1 簡介 DB2是IBM的一款優秀的關係型資料庫,簡單學習一下。 2 Docker安裝DB2 為了快速啟動,直接使用Docker來安裝DB2。先下載鏡像如下: docker pull ibmcom/db2:11.5.0.0 啟動資料庫如下: docker run -itd \ --name mydb ...
  • Spring管理Bean-IOC-02 2.基於XML配置bean 2.7通過util空間名稱創建list BookStore.java: package com.li.bean; import java.util.List; /** * @author 李 * @version 1.0 */ pu ...
  • Spring6 Spring項目的創建 打開IDEA,新建一個maven項目 在maven項目中引入spring的倉庫和依賴 <repositories> <repository> <id>repository.spring.milestone</id> <name>Spring Milestone ...
  • 2023-01-17 一、Spring中的註解 1、使用註解的原因 (1)使用註解將對象裝配到IOC容器中 (2)使用註解管理對象之間依賴關係(自動裝配) 2、Spring中裝配對象的註解 (1)@Component 標識一個受Spring IOC容器管理的普通組件 (2)@Repository 標 ...
  • 好久沒有更新文章了,高齡開發沒什麼技術,去了外包公司後沒怎麼更新文章了。今天分享下統一處理starter,相信開發web系統的時候都是會涉及到前後端的交互,而後端返回數據的時候一般都會統一封裝一個返回對象和統一處理異常,一般情況下都是在controller的每個方法中調用封裝的對象,把相應的數據塞到 ...
  • 2023-01-17 一、Spring管理druid步驟 (1)導入jar包 <!-- https://mvnrepository.com/artifact/com.alibaba/druid --> <dependency> <groupId>com.alibaba</groupId> <arti ...
  • 抽獎程式 ''' 抽獎程式 使用時可以修改嘉賓名單,然後單機‘開始’和‘停止’按鈕 來控制界面上名單的滾動實現抽獎功能,涉及的模塊主要 有多線程 ''' import itertools import random import threading import time import tkinte ...
一周排行
    -Advertisement-
    Play Games
  • 前言 當別人做大數據用Java、Python的時候,我使用.NET做大數據、數據挖掘,這確實是值得一說的事。 寫的並不全面,但都是實際工作中的內容。 .NET在大數據項目中,可以做什麼? 寫腳本(使用控制台程式+頂級語句) 寫工具(使用Winform) 寫介面、寫服務 使用C#寫代碼的優點是什麼? ...
  • 前言 本文寫給想學C#的朋友,目的是以儘快的速度入門 C#好學嗎? 對於這個問題,我以前的回答是:好學!但仔細想想,不是這麼回事,對於新手來說,C#沒有那麼好學。 反而學Java還要容易一些,學Java Web就行了,就是SpringBoot那一套。 但是C#方向比較多,你是學控制台程式、WebAP ...
  • 某一日晚上上線,測試同學在回歸項目黃金流程時,有一個工單項目介面報JSF序列化錯誤,馬上升級對應的client包版本,編譯部署後錯誤消失。 線上問題是解決了,但是作為程式員要瞭解問題發生的原因和本質。但這都是為什麼呢? ...
  • 本文介紹基於Python語言中TensorFlow的Keras介面,實現深度神經網路回歸的方法。 1 寫在前面 前期一篇文章Python TensorFlow深度學習回歸代碼:DNNRegressor詳細介紹了基於TensorFlow tf.estimator介面的深度學習網路;而在TensorFl ...
  • 前段時間因業務需要完成了一個工作流組件的編碼工作。藉著這個機會跟大家分享一下整個創作過程,希望大家喜歡,組件暫且命名為"easyFlowable"。 接下來的文章我將從什麼是工作流、為什麼要自研這個工作流組件、架構設計三個維度跟大家來做個整體介紹。 ...
  • 1 簡介 我們之前使用了dapr的本地托管模式,但在生產中我們一般使用Kubernetes托管,本文介紹如何在GKE(GCP Kubernetes)安裝dapr。 相關文章: dapr本地托管的服務調用體驗與Java SDK的Spring Boot整合 dapr入門與本地托管模式嘗試 2 安裝GKE ...
  • 摘要:在jvm中有很多的參數可以進行設置,這樣可以讓jvm在各種環境中都能夠高效的運行。絕大部分的參數保持預設即可。 本文分享自華為雲社區《為什麼需要對jvm進行優化,jvm運行參數之標準參數》,作者:共飲一杯無。 我們為什麼要對jvm做優化? 在本地開發環境中我們很少會遇到需要對jvm進行優化的需 ...
  • 背景 我們的業務共使用11台(阿裡雲)伺服器,使用SpringcloudAlibaba構建微服務集群,共計60個微服務,全部註冊在同一個Nacos集群 流量轉發路徑: nginx->spring-gateway->業務微服務 使用的版本如下: spring-boot.version:2.2.5.RE ...
  • 基於php+webuploader的大文件分片上傳,帶進度條,支持斷點續傳(刷新、關閉頁面、重新上傳、網路中斷等情況)。文件上傳前先檢測該文件是否已上傳,如果已上傳提示“文件已存在”,如果未上傳則直接上傳。視頻上傳時會根據設定的參數(分片大小、分片數量)進行上傳,上傳過程中會在目標文件夾中生成一個臨 ...
  • 基於php大文件分片上傳至七牛雲,使用的是七牛雲js-sdk V2版本,引入js文件,配置簡單,可以暫停,暫停後支持斷點續傳(刷新、關閉頁面、重新上傳、網路中斷等情況),可以配置分片大小和分片數量,官方文檔https://developer.qiniu.com/kodo/6889/javascrip ...