Python自動化辦公:讓程式自動分析數據製作報表,併發送郵箱

来源:https://www.cnblogs.com/hahaa/archive/2022/09/28/16737731.html
-Advertisement-
Play Games

序言 作為數據分析師,我們需要經常製作統計分析圖表。但是報表太多的時候往往需要花費我們大部分時間去製作報表。這耽誤了我們利用大量的時間去進行數據分析。但是作為數據分析師我們應該儘可能去挖掘表格圖表數據背後隱藏關聯信息,而不是簡單的統計表格製作圖表再發送報表。既然報表的工作不可免除,那我們應該如何利用 ...


序言

作為數據分析師,我們需要經常製作統計分析圖表。但是報表太多的時候往往需要花費我們大部分時間去製作報表。這耽誤了我們利用大量的時間去進行數據分析。但是作為數據分析師我們應該儘可能去挖掘表格圖表數據背後隱藏關聯信息,而不是簡單的統計表格製作圖表再發送報表。既然報表的工作不可免除,那我們應該如何利用我們所學的技術去更好的處理工作呢?這就需要我們製作一個Python小程式讓它自己去實現,這樣我們就有更多的時間去做數據分析。我們把讓程式自己運行的這個過程稱為自動化。

一、報表自動化目的

1.節省時間,提高效率

自動化總是能夠很好的節省時間,提高我們的工作效率。讓我們的程式編程儘可能的降低每個功能實現代碼的耦合性,更好的維護代碼。這樣我們會節省很多時間讓我們有空去做更多有價值有意義的工作。

2.減少錯誤

編碼實現效果正確無誤的話是是可以一直沿用的,如果是人為來操作的話反而可能會犯一些錯誤。交給固定的程式來做更加讓人放心,需求變更時僅修改部分代碼即可解決問題。

二、報表自動化範圍

首先我們需要根據業務需求來制定我們所需要的報表,並不是每個報表都需要進行自動化的,一些複雜二次開發的指標數據要實現自動化編程的比較複雜的,而且可能會隱藏著各種BUG。所以我們需要對我們工作所要用到的報表的特性進行歸納,以下是我們需要綜合考慮的幾個方面:

1.頻率

對於一些業務上經常需要用到的表,這些表我們可能要納入自動化程式的範圍。例如客戶信息清單、銷售額流量報表、業務流失報表、環比同比報表等。

這些使用頻率較高的報表,都很有必要進行自動化。對於那些偶爾需要使用的報表,或者是二次開髮指標,需要複製統計的報表,這些報表就沒必要實現自動化了。

2.開發時間

這就相當於成本和利率一樣,若是有些報表自動化實現困難,還超過了我們普通統計分析所需要的時間,就沒必要去實現自動化。所以開始自動化工作的時候要衡量一下開發腳本所耗費的時間和人工做表所耗費的時間哪個更短了。當然我會提供一套實現方案,但是僅對一些常用簡單的報表。

3.流程

對於我們報表每個過程和步驟,每個公司都有所不同,我們需要根據業務場景去編碼實現各個步驟功能。所以我們製作的流程應該是符合業務邏輯的,製作的程式也應該是符合邏輯的。

三、實現步驟

首先我們需要知道我們需要什麼指標,這裡再列出來:

指標

  • 總體概覽指標
    反映某一數據指標的整體大小

  • 對比性指標
    1.同比
    相鄰時間段內某一共同時間點上指標的對比
    2.環比
    相鄰時間段內的指標直接作差

  • 集中趨勢指標
    1.平均數/加權平均數
    2.眾數
    3.中位數

  • 離散程度指標
    1.全距(極差)
    最大界減最小界
    2.四分位數
    3.方差
    3.標準差

  • 相關性指標
    r

我們拿一個簡單的報表來進行模擬實現:

第一步:讀取數據源文件

首先我們要瞭解我們的數據是從哪裡來的,也就是數據源。我們最終的數據處理都是轉化為DataFrame來進行分析的,所以需要對數據源進行轉化為DataFrame形式:

import pandas as pd
import json
import pymysql
from sqlalchemy import create_engine
 
# 打開資料庫連接
conn = pymysql.connect(host='localhost',
                       port=3306,
                       user='root',
                       passwd='xxxx',
                       charset = 'utf8'
                       )
engine=create_engine('mysql+pymysql://root:xxxx@localhost/mysql?charset=utf8')
 
def read_excel(file):
    df_excel=pd.read_excel(file)
    return df_excel
def read_json(file):
    with open(file,'r')as json_f:
        df_json=pd.read_json(json_f)
        return df_json
def read_sql(table):
    sql_cmd ='SELECT * FROM %s'%table
    df_sql=pd.read_sql(sql_cmd,engine)
    return df_sql
def read_csv(file):
    df_csv=pd.read_csv(file)
    return df_csv

# 兄弟們學習python,有時候不知道怎麼學,從哪裡開始學。掌握了基本的一些語法或者做了兩個案例後,不知道下一步怎麼走,不知道如何去學習更加高深的知識。
# 那麼對於這些大兄弟們,我準備了大量的免費視頻教程,PDF電子書籍,以及源代碼!
# 還會有大佬解答!
# 都在這個群里了 279199867
# 歡迎加入,一起討論 一起學習!

 

以上代碼均通過測試可以正常使用,但是pandas的read函數針對不同的形式的文件讀取,其read函數參數也有不同的含義,需要直接根據表格的形式來調整。

其他read函數將會在文章寫完之後後續補上,除了read_sql需要連接資料庫之外,其他的都是比較簡單的。

第二步:DataFrame計算

我們以用戶信息為例:

我們需要統計的指標為:

#指標說明

單表圖:

前十個產品受眾最多的地區

產品的受眾地區:

#將城市空值的一行刪除
    df=df[df['city_num'].notna()]
    #刪除error
    df=df.drop(df[df['city_num']=='error'].index)
    #統計
    df = df.city_num.value_counts()

 

我們僅獲取前10名的城市就好了,封裝為餅圖:

def pie_chart(df):
    #將城市空值的一行刪除
    df=df[df['city_num'].notna()]
    #刪除error
    df=df.drop(df[df['city_num']=='error'].index)
    #統計
    df = df.city_num.value_counts()
    df.head(10).plot.pie(subplots=True,figsize=(5, 6),autopct='%.2f%%',radius = 1.2,startangle = 250,legend=False)
pie_chart(read_csv('user_info.csv'))

 

將圖表保存起來:

plt.savefig('fig_cat.png')

 

要是你覺得matplotlib的圖片不太美觀的話,你也可以換成echarts的圖片,會更加好看一些:

pie = Pie()
pie.add("",words)
pie.set_global_opts(title_opts=opts.TitleOpts(title="前十地區"))
#pie.set_series_opts(label_opts=opts.LabelOpts(user_df))
pie.render_notebook()

 

封裝後就可以直接使用了:

def echart_pie(user_df):
    user_df=user_df[user_df['city_num'].notna()]
    user_df=user_df.drop(user_df[user_df['city_num']=='error'].index)
    user_df = user_df.city_num.value_counts()
    name=user_df.head(10).index.tolist()
    value=user_df.head(10).values.tolist()
    words=list(zip(list(name),list(value)))
    pie = Pie()
    pie.add("",words)
    pie.set_global_opts(title_opts=opts.TitleOpts(title="前十地區"))
    #pie.set_series_opts(label_opts=opts.LabelOpts(user_df))
    return pie.render_notebook()
user_df=read_csv('user_info.csv')
echart_pie(user_df)

 

可以進行保存,可惜不是動圖:

from snapshot_selenium import snapshot
make_snapshot(snapshot,echart_pie(user_df).render(),"test.png")

 

保存為網頁的形式就可以自動載入JS進行渲染了:

echart_pie(user_df).render('problem.html')
os.system('problem.html')

 

第三步:自動發送郵件

做出來的一系列報表一般都要發給別人看的,對於一些每天需要發送到指定郵箱或者需要發送多封報表的可以使用Python來自動發送郵箱。

在Python發送郵件主要藉助到smtplib和email這個兩個模塊。

smtplib:主要用來建立和斷開與伺服器連接的工作。

email:主要用來設置一些些與郵件本身相關的內容。

不同種類的郵箱伺服器連接地址不一樣,大家根據自己平常使用的郵箱設置相應的伺服器進行連接。這裡博主用網易郵箱展示:

首先需要開啟POP3/SMTP/IMAP服務:

之後便可以根據授權碼使用python登入了。

import smtplib
from email import encoders
from email.header import Header
from email.utils import parseaddr,formataddr
from email.mime.application import MIMEApplication
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
 
#發件人郵箱
asender="[email protected]"
#收件人郵箱
areceiver="[email protected]"
#抄送人郵箱
acc="[email protected]"
#郵箱主題
asubject="謝謝關註"
#發件人地址
from_addr="[email protected]"
#郵箱授權碼
password="####"
#郵件設置
msg=MIMEMultipart()
msg['Subject']=asubject
msg['to']=areceiver
msg['Cc']=acc
msg['from']="fanstuck"
#郵件正文
body="你好,歡迎關註fanstuck,您的關註就是我繼續創作的動力!"
msg.attach(MIMEText(body,'plain','utf-8'))
#添加附件
htmlFile = 'C:/Users/10799/problem.html'
html = MIMEApplication(open(htmlFile , 'rb').read())
html.add_header('Content-Disposition', 'attachment', filename='html')
 
msg.attach(html)
#設置郵箱伺服器地址和介面
smtp_server="smtp.163.com"
server = smtplib.SMTP(smtp_server,25)
server.set_debuglevel(1)
#登錄郵箱
server.login(from_addr,password)
#發生郵箱
server.sendmail(from_addr,areceiver.split(',')+acc.split(','),msg.as_string())
#斷開伺服器連接
server.quit()

 

運行測試:

下載文件:

完全沒問題

今天的分享就到這裡,觀眾姥爺們,點關註不迷路~

最後分享一套Python教程:代碼總是學完就忘記?100個實戰項目!讓你沉迷學習丨學以致用丨下一個Python大神就是你!


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 你知道嗎,在 Jmix 中,REST API 有兩種實現方式! 很多應用是採取前後端分離的方式進行開發。這種模式下,對前端的選擇相對靈活,可以根據團隊的擅長技能選擇流行的 Angular/React/Vue 之一,或者前端為App/小程式等手機應用。Jmix 的一種典型應用場景就是作為這種類型應用程 ...
  • 1.問題分析 1.1. 公司雲桌面win7系統把之前C盤中自帶的py3.7環境給還原了,之前跑得好好的PlayWright案例不能運行了 2.解決過程 2.1. 參考網上的解決方案,說是node的版本問題,但是我將之前可以運行的V12.22.12版本回退到V12.9.1以後,還是不行,但是我發現我的 ...
  • Mac下protobuf生成文件報錯問題解決辦法,windows下就不會這麼麻煩了,如果linux下出現類似報錯信息按照下麵的解決邏輯依然適用。 1、由--go_out引發的報錯 1.報錯信息: user@C02FP58GML7H pbfile % protoc --go_out=./ ./user ...
  • 1.property 裝飾器:裝飾器是在不修改被裝飾對象源代碼以及調用方式的前提下為被裝飾對象添加新功能的可調用對象 property是一個裝飾器,是用來綁定給對象的方法偽造成一個數據屬性 裝飾器property,可以將類中的函數“偽裝成”對象的數據屬性,對象在訪問該特殊屬性時會觸發功能的執行,然後 ...
  • 摘要:本文講解基於傅里葉變換的高通濾波和低通濾波。 本文分享自華為雲社區《[Python圖像處理] 二十三.傅里葉變換之高通濾波和低通濾波》,作者:eastmount 。 一.高通濾波 傅里葉變換的目的並不是為了觀察圖像的頻率分佈(至少不是最終目的),更多情況下是為了對頻率進行過濾,通過修改頻率以達 ...
  • HashMap源碼深度剖析 * HashMap底層數據結構(為什麼引入紅黑樹、存儲數據的過程、哈希碰撞相關問題) * HashMap成員變數(初始化容量是多少、負載因數、數組長度為什麼是2的n次冪) * HashMap擴容機制(什麼時候需要擴容? 怎麼進行擴容?) * JDK7 與 Jdk8比較,J ...
  • 作者:小小____ 來源:segmentfault.com/a/1190000023052493 思維導圖如下 RBAC許可權分析 RBAC 全稱為基於角色的許可權控制,本段將會從什麼是RBAC,模型分類,什麼是許可權,用戶組的使用,實例分析等幾個方面闡述RBAC 思維導圖 繪製思維導圖如下 什麼是RBA ...
  • 如果你有機會跟一些技術大牛接觸的話,你會發現別人不僅是技術上比一般人強很多,而且在做事方面也有許多不一樣的習慣,在職場捲了這麼多年依然保持的習慣,往往是值得我們借鑒和學習的。 今天給大家分享幾個優秀程式員的好習慣,養成這6個習慣,你也能成為編程老司機。 第一,代碼自測再交付 寫完代碼不要急於交付,先 ...
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...