1. Page Cache 1.1 Page Cache 是什麼? 為了理解 Page Cache,我們不妨先看一下 Linux 的文件 I/O 系統,如下圖所示: Figure1. Linux 文件 I/O 系統 上圖中,紅色部分為 Page Cache。可見 Page Cache 的本質是由 L ...
1. Page Cache
1.1 Page Cache 是什麼?
為了理解 Page Cache,我們不妨先看一下 Linux 的文件 I/O 系統,如下圖所示:
Figure1. Linux 文件 I/O 系統
上圖中,紅色部分為 Page Cache。可見 Page Cache 的本質是由 Linux 內核管理的記憶體區域。我們通過 mmap 以及 buffered I/O 將文件讀取到記憶體空間實際上都是讀取到 Page Cache 中。
1.2 如何查看系統的 Page Cache?
通過讀取 /proc/meminfo
文件,能夠實時獲取系統記憶體情況:
$ cat /proc/meminfo
...
Buffers: 1224 kB
Cached: 111472 kB
SwapCached: 36364 kB
Active: 6224232 kB
Inactive: 979432 kB
Active(anon): 6173036 kB
Inactive(anon): 927932 kB
Active(file): 51196 kB
Inactive(file): 51500 kB
...
Shmem: 10000 kB
...
SReclaimable: 43532 kB
...
根據上面的數據,你可以簡單得出這樣的公式(等式兩邊之和都是 112696 KB):
Buffers + Cached + SwapCached = Active(file) + Inactive(file) + Shmem + SwapCached
兩邊等式都是 Page Cache,即:
Page Cache = Buffers + Cached + SwapCached
通過閱讀 1.4 以及 1.5 小節,就能夠理解為什麼 SwapCached 與 Buffers 也是 Page Cache 的一部分。
1.3 page 與 Page Cache
page 是記憶體管理分配的基本單位, Page Cache 由多個 page 構成。page 在操作系統中通常為 4KB 大小(32bits/64bits),而 Page Cache 的大小則為 4KB 的整數倍。
另一方面,並不是所有 page 都被組織為 Page Cache。
Linux 系統上供用戶可訪問的記憶體分為兩個類型[2],即:
- File-backed pages:文件備份頁也就是 Page Cache 中的 page,對應於磁碟上的若幹數據塊;對於這些頁最大的問題是臟頁回盤;
- Anonymous pages:匿名頁不對應磁碟上的任何磁碟數據塊,它們是進程的運行是記憶體空間(例如方法棧、局部變數表等屬性);
為什麼 Linux 不把 Page Cache 稱為 block cache,這不是更好嗎?
這是因為從磁碟中載入到記憶體的數據不僅僅放在 Page Cache 中,還放在 buffer cache 中。例如通過 Direct I/O 技術的磁碟文件就不會進入 Page Cache 中。當然,這個問題也有 Linux 歷史設計的原因,畢竟這隻是一個稱呼,含義隨著 Linux 系統的演進也逐漸不同。
下麵比較一下 File-backed pages 與 Anonymous pages 在 Swap 機制下的性能。
記憶體是一種珍惜資源,當記憶體不夠用時,記憶體管理單元(Memory Mangament Unit)需要提供調度演算法來回收相關記憶體空間。記憶體空間回收的方式通常就是 swap,即交換到持久化存儲設備上。
File-backed pages(Page Cache)的記憶體回收代價較低。 Page Cache 通常對應於一個文件上的若幹順序塊,因此可以通過順序 I/O 的方式落盤。另一方面,如果 Page Cache 上沒有進行寫操作(所謂的沒有臟頁),甚至不會將 Page Cache 回盤,因為數據的內容完全可以通過再次讀取磁碟文件得到。
Page Cache 的主要難點在於臟頁回盤,這個內容會在第二節進行詳細說明。
Anonymous pages 的記憶體回收代價較高。這是因為 Anonymous pages 通常隨機地寫入持久化交換設備。另一方面,無論是否有寫操作,為了確保數據不丟失,Anonymous pages 在 swap 時必須持久化到磁碟。
1.4 Swap 與缺頁中斷
Swap 機制指的是當物理記憶體不夠用,記憶體管理單元(Memory Mangament Unit,MMU)需要提供調度演算法來回收相關記憶體空間,然後將清理出來的記憶體空間給當前記憶體申請方。
Swap 機制存在的本質原因是 Linux 系統提供了虛擬記憶體管理機制,每一個進程認為其獨占記憶體空間,因此所有進程的記憶體空間之和遠遠大於物理記憶體。所有進程的記憶體空間之和超過物理記憶體的部分就需要交換到磁碟上。
操作系統以 page 為單位管理記憶體,當進程發現需要訪問的數據不在記憶體時,操作系統可能會將數據以頁的方式載入到記憶體中。上述過程被稱為缺頁中斷,當操作系統發生缺頁中斷時,就會通過系統調用將 page 再次讀到記憶體中。
但主記憶體的空間是有限的,當主記憶體中不包含可以使用的空間時,操作系統會從選擇合適的物理記憶體頁驅逐回磁碟,為新的記憶體頁讓出位置,選擇待驅逐頁的過程在操作系統中叫做頁面替換(Page Replacement),替換操作又會觸發 swap 機制。
如果物理記憶體足夠大,那麼可能不需要 Swap 機制,但是 Swap 在這種情況下還是有一定優勢:對於有發生記憶體泄漏幾率的應用程式(進程),Swap 交換分區更是重要,這可以確保記憶體泄露不至於導致物理記憶體不夠用,最終導致系統崩潰。但記憶體泄露會引起頻繁的 swap,此時非常影響操作系統的性能。
Linux 通過一個 swappiness 參數來控制 Swap 機制[2]:這個參數值可為 0-100,控制系統 swap 的優先順序:
- 高數值:較高頻率的 swap,進程不活躍時主動將其轉換出物理記憶體。
- 低數值:較低頻率的 swap,這可以確保互動式不因為記憶體空間頻繁地交換到磁碟而提高響應延遲。
最後,為什麼 Buffers 也是 Page Cache 的一部分?
這是因為當匿名頁(Inactive(anon) 以及 Active(anon))先被交換(swap out)到磁碟上後,然後再載入回(swap in)記憶體中,由於讀入到記憶體後原來的 Swap File 還在,所以 SwapCached 也可以認為是 File-backed page,即屬於 Page Cache。這個過程如 Figure 2 所示。
Figure2. 匿名頁的被交換後也是 Page Cache
1.5 Page Cache 與 buffer cache
執行 free 命令,註意到會有兩列名為 buffers 和 cached,也有一行名為 “-/+ buffers/cache”。
~ free -m
total used free shared buffers cached
Mem: 128956 96440 32515 0 5368 39900
-/+ buffers/cache: 51172 77784
Swap: 16002 0 16001
其中,cached 列表示當前的頁緩存(Page Cache)占用量,buffers 列表示當前的塊緩存(buffer cache)占用量。用一句話來解釋:Page Cache 用於緩存文件的頁數據,buffer cache 用於緩存塊設備(如磁碟)的塊數據。頁是邏輯上的概念,因此 Page Cache 是與文件系統同級的;塊是物理上的概念,因此 buffer cache 是與塊設備驅動程式同級的。
其中,cached 列表示當前的頁緩存(Page Cache)占用量,buffers 列表示當前的塊緩存(buffer cache)占用量。用一句話來解釋:Page Cache 用於緩存文件的頁數據,buffer cache 用於緩存塊設備(如磁碟)的塊數據。頁是邏輯上的概念,因此 Page Cache 是與文件系統同級的;塊是物理上的概念,因此 buffer cache 是與塊設備驅動程式同級的。
Page Cache 與 buffer cache 的共同目的都是加速數據 I/O:寫數據時首先寫到緩存,將寫入的頁標記為 dirty,然後向外部存儲 flush,也就是緩存寫機制中的 write-back(另一種是 write-through,Linux 預設情況下不採用);讀數據時首先讀取緩存,如果未命中,再去外部存儲讀取,並且將讀取來的數據也加入緩存。操作系統總是積極地將所有空閑記憶體都用作 Page Cache 和 buffer cache,當記憶體不夠用時也會用 LRU 等演算法淘汰緩存頁。
在 Linux 2.4 版本的內核之前,Page Cache 與 buffer cache 是完全分離的。但是,塊設備大多是磁碟,磁碟上的數據又大多通過文件系統來組織,這種設計導致很多數據被緩存了兩次,浪費記憶體。所以在 2.4 版本內核之後,兩塊緩存近似融合在了一起:如果一個文件的頁載入到了 Page Cache,那麼同時 buffer cache 只需要維護塊指向頁的指針就可以了。只有那些沒有文件表示的塊,或者繞過了文件系統直接操作(如dd命令)的塊,才會真正放到 buffer cache 里。因此,我們現在提起 Page Cache,基本上都同時指 Page Cache 和 buffer cache 兩者,本文之後也不再區分,直接統稱為 Page Cache。
下圖近似地示出 32-bit Linux 系統中可能的一種 Page Cache 結構,其中 block size 大小為 1KB,page size 大小為 4KB。
Page Cache 中的每個文件都是一棵基數樹(radix tree,本質上是多叉搜索樹),樹的每個節點都是一個頁。根據文件內的偏移量就可以快速定位到所在的頁,如下圖所示。關於基數樹的原理可以參見英文維基,這裡就不細說了。
1.6 Page Cache 與預讀
操作系統為基於 Page Cache 的讀緩存機制提供預讀機制(PAGE_READAHEAD),一個例子是:
- 用戶線程僅僅請求讀取磁碟上文件 A 的 offset 為 0-3KB 範圍內的數據,由於磁碟的基本讀寫單位為 block(4KB),於是操作系統至少會讀 0-4KB 的內容,這恰好可以在一個 page 中裝下。
- 但是操作系統出於局部性原理[3]會選擇將磁碟塊 offset [4KB,8KB)、[8KB,12KB) 以及 [12KB,16KB) 都載入到記憶體,於是額外在記憶體中申請了 3 個 page;
下圖代表了操作系統的預讀機制:
Figure.操作系統的預讀機制;
上圖中,應用程式利用 read 系統調動讀取 4KB 數據,實際上內核使用 readahead 機制完成了 16KB 數據的讀取。
2. Page Cache 與文件持久化的一致性&可靠性
現代 Linux 的 Page Cache 正如其名,是對磁碟上 page(頁)的記憶體緩存,同時可以用於讀/寫操作。任何系統引入緩存,就會引發一致性問題:記憶體中的數據與磁碟中的數據不一致,例如常見後端架構中的 Redis 緩存與 MySQL 資料庫就存在一致性問題。
Linux 提供多種機制來保證數據一致性,但無論是單機上的記憶體與磁碟一致性,還是分散式組件中節點 1 與節點 2 、節點 3 的數據一致性問題,理解的關鍵是 trade-off:吞吐量與數據一致性保證是一對矛盾。
首先,需要我們理解一下文件的數據。文件 = 數據 + 元數據。元數據用來描述文件的各種屬性,也必須存儲在磁碟上。因此,我們說保證文件一致性其實包含了兩個方面:數據一致+元數據一致。
文件的元數據包括:文件大小、創建時間、訪問時間、屬主屬組等信息。
我們考慮如下一致性問題:如果發生寫操作並且對應的數據在 Page Cache 中,那麼寫操作就會直接作用於 Page Cache 中,此時如果數據還沒刷新到磁碟,那麼記憶體中的數據就領先於磁碟,此時對應 page 就被稱為 Dirty page。
當前 Linux 下以兩種方式實現文件一致性:
- Write Through(寫穿):向用戶層提供特定介面,應用程式可主動調用介面來保證文件一致性;
- Write back(寫回):系統中存在定期任務(表現形式為內核線程),周期性地同步文件系統中文件臟數據塊,這是預設的 Linux 一致性方案;
上述兩種方式最終都依賴於系統調用,主要分為如下三種系統調用:
方法 | 含義 |
---|---|
fsync(intfd) | fsync(fd):將 fd 代表的文件的臟數據和臟元數據全部刷新至磁碟中。 |
fdatasync(int fd) | fdatasync(fd):將 fd 代表的文件的臟數據刷新至磁碟,同時對必要的元數據刷新至磁碟中,這裡所說的必要的概念是指:對接下來訪問文件有關鍵作用的信息,如文件大小,而文件修改時間等不屬於必要信息 |
sync() | sync():則是對系統中所有的髒的文件數據元數據刷新至磁碟中 |
上述三種系統調用可以分別由用戶進程與內核進程發起。下麵我們研究一下內核線程的相關特性。
- 創建的針對回寫任務的內核線程數由系統中持久存儲設備決定,為每個存儲設備創建單獨的刷新線程;
- 關於多線程的架構問題,Linux 內核採取了 Lighthttp 的做法,即系統中存在一個管理線程和多個刷新線程(每個持久存儲設備對應一個刷新線程)。管理線程監控設備上的臟頁面情況,若設備一段時間內沒有產生臟頁面,就銷毀設備上的刷新線程;若監測到設備上有臟頁面需要回寫且尚未為該設備創建刷新線程,那麼創建刷新線程處理臟頁面回寫。而刷新線程的任務較為單調,只負責將設備中的臟頁面回寫至持久存儲設備中。
- 刷新線程刷新設備上臟頁面大致設計如下:
- 每個設備保存臟文件鏈表,保存的是該設備上存儲的臟文件的 inode 節點。所謂的回寫文件臟頁面即回寫該 inode 鏈表上的某些文件的臟頁面;
- 系統中存在多個回寫時機,第一是應用程式主動調用回寫介面(fsync,fdatasync 以及 sync 等),第二管理線程周期性地喚醒設備上的回寫線程進行回寫,第三是某些應用程式/內核任務發現記憶體不足時要回收部分緩存頁面而事先進行臟頁面回寫,設計一個統一的框架來管理這些回寫任務非常有必要。
Write Through 與 Write back 在持久化的可靠性上有所不同:
- Write Through 以犧牲系統 I/O 吞吐量作為代價,向上層應用確保一旦寫入,數據就已經落盤,不會丟失;
- Write back 在系統發生宕機的情況下無法確保數據已經落盤,因此存在數據丟失的問題。不過,在程式掛了,例如被 kill -9,Page Cache 中的數據操作系統還是會確保落盤;
3. Page Cache 的優劣勢
3.1 Page Cache 的優勢
1.加快數據訪問
如果數據能夠在記憶體中進行緩存,那麼下一次訪問就不需要通過磁碟 I/O 了,直接命中記憶體緩存即可。
由於記憶體訪問比磁碟訪問快很多,因此加快數據訪問是 Page Cache 的一大優勢。
2.減少 I/O 次數,提高系統磁碟 I/O 吞吐量
得益於 Page Cache 的緩存以及預讀能力,而程式又往往符合局部性原理,因此通過一次 I/O 將多個 page 裝入 Page Cache 能夠減少磁碟 I/O 次數, 進而提高系統磁碟 I/O 吞吐量。
3.2 Page Cache 的劣勢
page cache 也有其劣勢,最直接的缺點是需要占用額外物理記憶體空間,物理記憶體在比較緊俏的時候可能會導致頻繁的 swap 操作,最終導致系統的磁碟 I/O 負載的上升。
Page Cache 的另一個缺陷是對應用層並沒有提供很好的管理 API,幾乎是透明管理。應用層即使想優化 Page Cache 的使用策略也很難進行。因此一些應用選擇在用戶空間實現自己的 page 管理,而不使用 page cache,例如 MySQL InnoDB 存儲引擎以 16KB 的頁進行管理。
Page Cache 最後一個缺陷是在某些應用場景下比 Direct I/O 多一次磁碟讀 I/O 以及磁碟寫 I/O。這一點可以參考[4]。
來源:https://spongecaptain.cool/SimpleClearFileIO/1. page cache.html
近期熱文推薦:
1.1,000+ 道 Java面試題及答案整理(2022最新版)
4.別再寫滿屏的爆爆爆炸類了,試試裝飾器模式,這才是優雅的方式!!
覺得不錯,別忘了隨手點贊+轉發哦!