合宙AIR105(二): 時鐘設置和延遲函數

来源:https://www.cnblogs.com/milton/archive/2022/06/18/16387525.html
-Advertisement-
Play Games

Air105 的時鐘 高頻振蕩源 * 晶元支持使用內部振蕩源, 或使用外置12MHz晶體 * 晶元上電覆位後 ROM boot 啟動過程基於內部12MHz的振蕩器 * 晶元內部集成的12MHz振蕩源精度為±2%, 精度一般 * 使用外置12MHz晶體, 需要軟體切換 * 經過PLL倍頻後為系統提供... ...


目錄

Air105 的時鐘

高頻振蕩源

  • 晶元支持使用內部振蕩源, 或使用外置12MHz晶體
    • 晶元上電覆位後 ROM boot 啟動過程基於內部12MHz的振蕩器
    • 晶元內部集成的12MHz振蕩源精度為±2%, 精度一般
    • 使用外置12MHz晶體, 需要軟體切換
  • 經過PLL倍頻後為系統提供輸入
  • 倍頻後的PLL時鐘頻率可通過寄存器進行配置,可選頻率為:108MHz, 120MHz, 132MHz, 144MHz, 156MHz, 168MHz, 180MHz, 192MHz, 204MHz

分頻結構

  • PLL_CLK
    • 外部 XTAL12M 或 內部 OSC12M -> 直通, 或PLL產生 108MHz - 204MHz
  • FCLK / CPU_CLK
    • PLL_CLK -> 2bit分頻(0, 2分頻, 4分頻) -> FCLK
    • FCLK就是主程式迴圈的時鐘
  • HCLK
    • FCLK -> 1bit分頻(預設=1, 2分頻) -> HCLK
    • 當 FCLK 小於 102MHz 時不分頻, 否則2分頻
  • PCLK
    • HCLK -> 1bit分頻(預設=0, 不分頻) -> PCLK (外設頻率)
    • PCLK 是大部分外設 TIMER, ADC, SPI, WDT, GPIO, I2C, UART 的時鐘
  • QSPI
    • FCLK -> 3bit分頻(預設=3, 4分頻) -> QSPI

低頻振蕩源

  • 晶元安全區基於內部32KHz,RTC預設基於內部OSC 32K, 使用外部XTAL 32K需要軟體切換
  • 支持內部或外部32KHz輸出

時鐘結構

  • (外部或內部 32K RTC OSC) -> SYSTICK
  • 內部 32K OSC -> Security

時鐘設置

以下代碼基於 air105_project 的庫函數

寄存器

寄存器手冊 Air105晶元數據手冊_1.1.pdf

寄存器的基礎地址, 定義在 air105.h

#define AIR105_FLASH_BASE                       (0x01000000UL)                /*!< (FLASH     ) Base Address */
#define AIR105_SRAM_BASE                        (0x20000000UL)                /*!< (SRAM      ) Base Address */
#define AIR105_PERIPH_BASE                      (0x40000000UL)                /*!< (Peripheral) Base Address */

#define AIR105_AHB_BASE                         (AIR105_PERIPH_BASE)
#define AIR105_APB0_BASE                        (AIR105_PERIPH_BASE + 0x10000)

#define SYSCTRL_BASE                            (AIR105_APB0_BASE + 0xF000)

SYSCTRL_BASE

  • 地址 = 外設基礎地址 0x40000000UL + APB0 偏移 0x10000 + SYSCTRL 偏移 0xF000
  • 範圍 [0x4001_F000, 0x4001_FFFF]

時鐘振蕩源

振蕩源選擇

SYSCTRL_SYSCLKSourceSelect(SELECT_EXT12M);

12MHz 時鐘來源選擇: 0:片外 XTAL, 1:片內 OSC

void SYSCTRL_SYSCLKSourceSelect(SYSCLK_SOURCE_TypeDef source)
{
    assert_param(IS_SYSCLK_SOURCE(source));
    
    switch (source)
    {
    case SELECT_EXT12M:
        // FREQ_SEL 是一個32bit的寄存器, 先與補碼(清零第12位), 然後寫入值(0)
        SYSCTRL->FREQ_SEL = ((SYSCTRL->FREQ_SEL & (~SYSCTRL_FREQ_SEL_CLOCK_SOURCE_Mask)) | SYSCTRL_FREQ_SEL_CLOCK_SOURCE_EXT);
        break;
    
    case SELECT_INC12M:
        // 先與補碼(清零第12位), 然後寫入值(1)
        SYSCTRL->FREQ_SEL = ((SYSCTRL->FREQ_SEL & (~SYSCTRL_FREQ_SEL_CLOCK_SOURCE_Mask)) | SYSCTRL_FREQ_SEL_CLOCK_SOURCE_INC);
        break;
    }
}

時鐘頻率

設置使用預設的內部時鐘HSI(Internal clock)

void SystemClock_Config_HSI(void)
{
    // 設置CPU頻率, 直接選擇, 不需要計算
    SYSCTRL_PLLConfig(SYSCTRL_PLL_204MHz);
    // 分頻後產生 FCLK -> 這是主程式的時鐘
    SYSCTRL_PLLDivConfig(SYSCTRL_PLL_Div_None);
    // 分頻產生 HCLK, 如果 FCLK > 102MHz 則無論如何設置, 都會被二分頻
    SYSCTRL_HCLKConfig(SYSCTRL_HCLK_Div2);
    // 分頻產生 PCLK -> 這是大部分外設的時鐘
    SYSCTRL_PCLKConfig(SYSCTRL_PCLK_Div2);
    QSPI_SetLatency((uint32_t)0);
}

PLL分頻的選項

#define SYSCTRL_PLL_Div_None                       ((uint32_t)0x00)
#define SYSCTRL_PLL_Div2                           ((uint32_t)0x01)
#define SYSCTRL_PLL_Div4                           ((uint32_t)0x10)

設置 SysTick

void Delay_Init(void)
{
    SYSCTRL_ClocksTypeDef clocks;

    SYSCTRL_GetClocksFreq(&clocks);
    SysTick_Config(clocks.CPU_Frequency / 1000000);   ///< 1us
}

調用 SysTick_Config 將單個 SysTick 設置為 1 us.

也可以直接使用SYSCTRL->HCLK_1MS_VAL * 2 / 1000這個變數代表了當前時鐘配置下, 1ms需要的HCLK時鐘周期, 根據當前FCLK是否大於108MHz 確定是否要乘以2.

之後就會每隔1us調用 SysTick_Handler(void), 在這裡設置 32bit g_current_tick 遞增, 可以用於延時控制. 因為32bit數的限制, 1.2個小時後會溢出, 所以這裡有一個延遲的極限.

void SysTick_Handler(void)
{
    g_current_tick++;
}

延遲函數

為避免溢出造成的延遲錯誤, 需要做一個判斷

uint32_t get_diff_tick(uint32_t cur_tick, uint32_t prior_tick)
{
    if (cur_tick < prior_tick)
    {
        // 如果當前值比前值還小, 說明發生了溢出, 用當前值加上原值取反(即原值離溢出的距離)
        return (cur_tick + (~prior_tick));
    }
    else
    {
        return (cur_tick - prior_tick);
    }
}

延遲的函數

void Delay_us(uint32_t usec)
{
    uint32_t old_tick;

    old_tick = g_current_tick;
    while (get_diff_tick(g_current_tick, old_tick) < usec);
}

void Delay_ms(uint32_t msec)
{
    uint32_t old_tick;

    old_tick = g_current_tick;
    while (get_diff_tick(g_current_tick, old_tick) < (msec * 1000));
}

代碼

代碼地址: https://gitee.com/iosetting/air105_project

可以使用Keil5 MDK 直接打開 Demos 目錄下的示例項目, 與Air105開發板接線參考前一篇合宙AIR105(一): Keil MDK開發環境, DAP-Link 燒錄和調試


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 一、題目 描述 給定一個僅包含0和1的n*n二維矩陣,請計算二維矩陣的最大值。 計算規則如下 1、每行元素按下標順序組成一個二進位數(下標越大約排在低位),二進位數的值就是該行的值,矩陣各行之和為矩陣的值 2、允許通過向左或向右整體迴圈移動每個元素來改變元素在行中的位置 比如:[1,0,1,1,1] ...
  • 做下記錄, 首先插入一個dataGridView控制項,兩個button按鈕(導入數據,導出數據),一個ComboBox(獲取列標題使用),一個textbox(輸入關鍵字),一個定位按鈕(定位使用) 1,導入數據(NPOI) 1 2 private void daoRuShuJu_cmd_Click( ...
  • 最近在看 C++ 的方法和類模板,我就在想 C# 中也是有這個概念的,不過叫法不一樣,人家叫模板,我們叫泛型,哈哈,有點意思,這一篇我們來聊聊它們底層是怎麼玩的? 一:C++ 中的模板玩法 畢竟 C++ 是相容 C 語言,而 C 是過程式的玩法,所以 C++ 就出現了兩種模板類型,分別為:函數模板 ...
  • 一、CDN是什麼? CDN的全稱是Content Delivery Network,即內容分髮網絡。其目的是通過在現有的Internet中增加一層新的CACHE(緩存)層,將網站的內容發佈到最接近用戶的網路”邊緣“的節點,使用戶可以就近取得所需的內容(就近原則),提高用戶訪問網站的響應速度。從技術上 ...
  • Air105 有 1 個 Timer 單元,包含 8 個獨立定時器: Timer0 到 Time7, 8 個定時器中斷源獨立,每個定時器單獨占 1 個中斷源, 使用 PCLK 時鐘頻率作為定時器計時鐘源, 定時器採用向下計數方式. 每個 Timer 單元定時器都支持 PWM 模式, PWM 模式最高... ...
  • #一、防火牆配置 前言:電腦的防火牆配置保證了別的主機無法訪問本機非開放埠 1、防火牆介紹 Linux預設防火牆是開啟的,而且所以的埠對外都是不可訪問的,該策略保證了電腦的安全 但同時也帶來了問題如:其他電腦無法訪問本機上項目開啟的埠號 在Linux上安裝Tomcat,Tomcat軟體需 ...
  • 一、功能變數名稱系統概述 功能變數名稱系統DNS(Domain Name System)是網際網路使用的命名系統,用來把便於人們使用的機器名字轉換成為IP地址。功能變數名稱系統其實就是名字系統。為什麼不叫“名字”而叫“功能變數名稱”呢?這是因為在這種網際網路的命名系統中使用了許多的“域(domain)”,因此就出現了“功能變數名稱”這個名詞。 ...
  • vmstat 是一個查看虛擬記憶體(Virtual Memory)使用狀況的工具,但是怎樣通過 vmstat 來發現系統中的瓶頸呢? 1。 使用vmstat 使用前我們先看下命令介紹及參數定義 Usage: vmstat [options] [delay [count]] Options: -a, - ...
一周排行
    -Advertisement-
    Play Games
  • 1、預覽地址:http://139.155.137.144:9012 2、qq群:801913255 一、前言 隨著網路的發展,企業對於信息系統數據的保密工作愈發重視,不同身份、角色對於數據的訪問許可權都應該大相徑庭。 列如 1、不同登錄人員對一個數據列表的可見度是不一樣的,如數據列、數據行、數據按鈕 ...
  • 前言 上一篇文章寫瞭如何使用RabbitMQ做個簡單的發送郵件項目,然後評論也是比較多,也是準備去學習一下如何確保RabbitMQ的消息可靠性,但是由於時間原因,先來說說設計模式中的簡單工廠模式吧! 在瞭解簡單工廠模式之前,我們要知道C#是一款面向對象的高級程式語言。它有3大特性,封裝、繼承、多態。 ...
  • Nodify學習 一:介紹與使用 - 可樂_加冰 - 博客園 (cnblogs.com) Nodify學習 二:添加節點 - 可樂_加冰 - 博客園 (cnblogs.com) 介紹 Nodify是一個WPF基於節點的編輯器控制項,其中包含一系列節點、連接和連接器組件,旨在簡化構建基於節點的工具的過程 ...
  • 創建一個webapi項目做測試使用。 創建新控制器,搭建一個基礎框架,包括獲取當天日期、wiki的請求地址等 創建一個Http請求幫助類以及方法,用於獲取指定URL的信息 使用http請求訪問指定url,先運行一下,看看返回的內容。內容如圖右邊所示,實際上是一個Json數據。我們主要解析 大事記 部 ...
  • 最近在不少自媒體上看到有關.NET與C#的資訊與評價,感覺大家對.NET與C#還是不太瞭解,尤其是對2016年6月發佈的跨平臺.NET Core 1.0,更是知之甚少。在考慮一番之後,還是決定寫點東西總結一下,也回顧一下.NET的發展歷史。 首先,你沒看錯,.NET是跨平臺的,可以在Windows、 ...
  • Nodify學習 一:介紹與使用 - 可樂_加冰 - 博客園 (cnblogs.com) Nodify學習 二:添加節點 - 可樂_加冰 - 博客園 (cnblogs.com) 添加節點(nodes) 通過上一篇我們已經創建好了編輯器實例現在我們為編輯器添加一個節點 添加model和viewmode ...
  • 前言 資料庫併發,數據審計和軟刪除一直是數據持久化方面的經典問題。早些時候,這些工作需要手寫複雜的SQL或者通過存儲過程和觸發器實現。手寫複雜SQL對軟體可維護性構成了相當大的挑戰,隨著SQL字數的變多,用到的嵌套和複雜語法增加,可讀性和可維護性的難度是幾何級暴漲。因此如何在實現功能的同時控制這些S ...
  • 類型檢查和轉換:當你需要檢查對象是否為特定類型,並且希望在同一時間內將其轉換為那個類型時,模式匹配提供了一種更簡潔的方式來完成這一任務,避免了使用傳統的as和is操作符後還需要進行額外的null檢查。 複雜條件邏輯:在處理複雜的條件邏輯時,特別是涉及到多個條件和類型的情況下,使用模式匹配可以使代碼更 ...
  • 在日常開發中,我們經常需要和文件打交道,特別是桌面開發,有時候就會需要載入大批量的文件,而且可能還會存在部分文件缺失的情況,那麼如何才能快速的判斷文件是否存在呢?如果處理不當的,且文件數量比較多的時候,可能會造成卡頓等情況,進而影響程式的使用體驗。今天就以一個簡單的小例子,簡述兩種不同的判斷文件是否... ...
  • 前言 資料庫併發,數據審計和軟刪除一直是數據持久化方面的經典問題。早些時候,這些工作需要手寫複雜的SQL或者通過存儲過程和觸發器實現。手寫複雜SQL對軟體可維護性構成了相當大的挑戰,隨著SQL字數的變多,用到的嵌套和複雜語法增加,可讀性和可維護性的難度是幾何級暴漲。因此如何在實現功能的同時控制這些S ...