HBase Filter 過濾器之 DependentColumnFilter 詳解

来源:https://www.cnblogs.com/zpb2016/archive/2020/05/20/12921448.html
-Advertisement-
Play Games

前言: 本文詳細介紹了 HBase DependentColumnFilter 過濾器 Java&Shell API 的使用,並貼出了相關示例代碼以供參考。DependentColumnFilter 也稱參考列過濾器,是一種允許用戶指定一個參考列或引用列來過濾其他列的過濾器,過濾的原則是基於參考列的 ...


前言:本文詳細介紹了 HBase DependentColumnFilter 過濾器 Java&Shell API 的使用,並貼出了相關示例代碼以供參考。DependentColumnFilter 也稱參考列過濾器,是一種允許用戶指定一個參考列或引用列來過濾其他列的過濾器,過濾的原則是基於參考列的時間戳來進行篩選。

該過濾器嘗試找到該列所在的每一行,並返回該行具有相同時間戳的全部鍵值對;如果某行不包含這個指定的列,則什麼都不返回。參數dropDependentColumn 決定參考列被返回還是丟棄,為true時表示參考列被返回,為false時表示被丟棄。可以把DependentColumnFilter理解為一個valueFilter和一個時間戳過濾器的組合。如果想要獲取同一時間線的數據可以考慮使用此過濾器。比較器細節及原理請參照之前的更文:HBase Filter 過濾器之比較器 Comparator 原理及源碼學習

一。Java Api

頭部代碼

public class DependentColumnFilterDemo {

    private static boolean isok = false;
    private static String tableName = "test";
    private static String[] cfs = new String[]{"f1", "f2"};
    private static String[] data1 = new String[]{"row-1:f2:c3:1234abc56", "row-3:f1:c3:1234321"};
    private static String[] data2 = new String[]{
            "row-1:f1:c1:abcdefg", "row-1:f2:c2:abc", "row-2:f1:c1:abc123456", "row-2:f2:c2:1234abc567"
    };

    public static void main(String[] args) throws IOException, InterruptedException {

        MyBase myBase = new MyBase();
        Connection connection = myBase.createConnection();
        if (isok) {
            myBase.deleteTable(connection, tableName);
            myBase.createTable(connection, tableName, cfs);
            // 造數據
            myBase.putRows(connection, tableName, data1);  // 第一批數據
            Thread.sleep(10);
            myBase.putRows(connection, tableName, data2);  // 第二批數據
        }
        Table table = connection.getTable(TableName.valueOf(tableName));
        Scan scan = new Scan();

中部代碼
向右滑動滾動條可查看輸出結果。

        // 構造方法一
        DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"));  // [row-1:f1:c1:abcdefg, row-1:f2:c2:abc, row-2:f1:c1:abc123456, row-2:f2:c2:1234abc567]

        // 構造方法二 boolean dropDependentColumn=true
        DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), true);  // [row-1:f2:c2:abc, row-2:f2:c2:1234abc567]

        // 構造方法二 boolean dropDependentColumn=false  預設為false
        DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false); // [row-1:f1:c1:abcdefg, row-1:f2:c2:abc, row-2:f1:c1:abc123456, row-2:f2:c2:1234abc567]

        // 構造方法三 + BinaryComparator 比較器過濾數據
        DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,
                CompareFilter.CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes("abcdefg"))); // [row-1:f1:c1:abcdefg, row-1:f2:c2:abc]

        // 構造方法三 + BinaryPrefixComparator 比較器過濾數據
        DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,
                CompareFilter.CompareOp.EQUAL, new BinaryPrefixComparator(Bytes.toBytes("abc")));  // [row-1:f1:c1:abcdefg, row-1:f2:c2:abc, row-2:f1:c1:abc123456, row-2:f2:c2:1234abc567]

        // 構造方法三 + SubstringComparator 比較器過濾數據
        DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,
                CompareFilter.CompareOp.EQUAL, new SubstringComparator("1234"));  // [row-2:f1:c1:abc123456, row-2:f2:c2:1234abc567]

        // 構造方法三 + RegexStringComparator 比較器過濾數據
        DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,
                CompareFilter.CompareOp.EQUAL, new RegexStringComparator("[a-z]"));  // [row-1:f1:c1:abcdefg, row-1:f2:c2:abc, row-2:f1:c1:abc123456, row-2:f2:c2:1234abc567]

        // 構造方法三 + RegexStringComparator 比較器過濾數據
        DependentColumnFilter filter = new DependentColumnFilter(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,
                CompareFilter.CompareOp.EQUAL, new RegexStringComparator("1234[a-z]"));  // []  思考題:與上例對比,想想為什麼為空?

該過濾器同時也支持各比較器的不同比較語法,同之前介紹的各種過濾器是一樣的,這裡不再一一舉例了。

尾部代碼

		scan.setFilter(filter);
        ResultScanner scanner = table.getScanner(scan);
        Iterator<Result> iterator = scanner.iterator();
        LinkedList<String> keys = new LinkedList<>();
        while (iterator.hasNext()) {
            String key = "";
            Result result = iterator.next();
            for (Cell cell : result.rawCells()) {
                byte[] rowkey = CellUtil.cloneRow(cell);
                byte[] family = CellUtil.cloneFamily(cell);
                byte[] column = CellUtil.cloneQualifier(cell);
                byte[] value = CellUtil.cloneValue(cell);
                key = Bytes.toString(rowkey) + ":" + Bytes.toString(family) + ":" + Bytes.toString(column) + ":" + Bytes.toString(value);
                keys.add(key);
            }
        }
        System.out.println(keys);
        scanner.close();
        table.close();
        connection.close();
    }
}

二。Shell Api

HBase test 表數據一覽:

hbase(main):009:0> scan 'test'
ROW                                              COLUMN+CELL
 row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
 row-1                                           column=f2:c3, timestamp=1589794115241, value=1234abc56
 row-2                                           column=f1:c1, timestamp=1589794115268, value=abc123456
 row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
 row-3                                           column=f1:c3, timestamp=1589794115241, value=1234321
3 row(s) in 0.0280 seconds

0. 簡單構造方法

hbase(main):006:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1')"}
ROW                                              COLUMN+CELL
 row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
 row-2                                           column=f1:c1, timestamp=1589794115268, value=abc123456
 row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
2 row(s) in 0.0450 seconds

hbase(main):008:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1',false)"}
ROW                                              COLUMN+CELL
 row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
 row-2                                           column=f1:c1, timestamp=1589794115268, value=abc123456
 row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
2 row(s) in 0.0310 seconds

hbase(main):007:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1',true)"}
ROW                                              COLUMN+CELL
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
 row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
2 row(s) in 0.0250 seconds

1. BinaryComparator 構造過濾器

方式一:

hbase(main):004:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1',false,=,'binary:abcdefg')"}
ROW                                              COLUMN+CELL
 row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
1 row(s) in 0.0330 seconds

hbase(main):005:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1',true,=,'binary:abcdefg')"}
ROW                                              COLUMN+CELL
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
1 row(s) in 0.0120 seconds

支持的比較運算符:= != > >= < <=,不再一一舉例。

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.BinaryComparator
import org.apache.hadoop.hbase.filter.DependentColumnFilter

hbase(main):016:0> scan 'test',{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,CompareFilter::CompareOp.valueOf('EQUAL'), BinaryComparator.new(Bytes.toBytes('abcdefg')))}
ROW                                              COLUMN+CELL
 row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
1 row(s) in 0.0170 seconds

hbase(main):017:0> scan 'test',{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), true,CompareFilter::CompareOp.valueOf('EQUAL'), BinaryComparator.new(Bytes.toBytes('abcdefg')))}
ROW                                              COLUMN+CELL
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
1 row(s) in 0.0140 seconds

支持的比較運算符:LESS、LESS_OR_EQUAL、EQUAL、NOT_EQUAL、GREATER、GREATER_OR_EQUAL,不再一一舉例。

推薦使用方式一,更簡潔方便。

2. BinaryPrefixComparator 構造過濾器

方式一:

hbase(main):019:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1',false,=,'binaryprefix:abc')"}
ROW                                              COLUMN+CELL
 row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
 row-2                                           column=f1:c1, timestamp=1589794115268, value=abc123456
 row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
2 row(s) in 0.0330 seconds

hbase(main):020:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1',true,=,'binaryprefix:abc')"}
ROW                                              COLUMN+CELL
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
 row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
2 row(s) in 0.0600 seconds

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.BinaryPrefixComparator
import org.apache.hadoop.hbase.filter.DependentColumnFilter

hbase(main):023:0> scan 'test',{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,CompareFilter::CompareOp.valueOf('EQUAL'), BinaryPrefixComparator.new(Bytes.toBytes('abc')))}
ROW                                              COLUMN+CELL
 row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
 row-2                                           column=f1:c1, timestamp=1589794115268, value=abc123456
 row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
2 row(s) in 0.0180 seconds

hbase(main):022:0> scan 'test',{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), true,CompareFilter::CompareOp.valueOf('EQUAL'), BinaryPrefixComparator.new(Bytes.toBytes('abc')))}
ROW                                              COLUMN+CELL
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
 row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
2 row(s) in 0.0190 seconds

其它同上。

3. SubstringComparator 構造過濾器

方式一:

hbase(main):025:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1',false,=,'substring:abc')"}
ROW                                              COLUMN+CELL
 row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
 row-2                                           column=f1:c1, timestamp=1589794115268, value=abc123456
 row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
2 row(s) in 0.0340 seconds

hbase(main):024:0> scan 'test',{FILTER=>"DependentColumnFilter('f1','c1',true,=,'substring:abc')"}
ROW                                              COLUMN+CELL
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
 row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
2 row(s) in 0.0160 seconds

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.DependentColumnFilter

hbase(main):028:0> scan 'test',{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('abc'))}
ROW                                              COLUMN+CELL
 row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
 row-2                                           column=f1:c1, timestamp=1589794115268, value=abc123456
 row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
2 row(s) in 0.0150 seconds

hbase(main):029:0> scan 'test',{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), true,CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('abc'))}
ROW                                              COLUMN+CELL
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
 row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
2 row(s) in 0.0170 seconds

區別於上的是這裡直接傳入字元串進行比較,且只支持EQUALNOT_EQUAL兩種比較符。

4. RegexStringComparator 構造過濾器

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.RegexStringComparator
import org.apache.hadoop.hbase.filter.DependentColumnFilter

hbase(main):035:0> scan 'test',{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), false,CompareFilter::CompareOp.valueOf('EQUAL'), RegexStringComparator.new('[a-z]'))}
ROW                                              COLUMN+CELL
 row-1                                           column=f1:c1, timestamp=1589794115268, value=abcdefg
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
 row-2                                           column=f1:c1, timestamp=1589794115268, value=abc123456
 row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
2 row(s) in 0.0170 seconds

hbase(main):034:0* scan 'test',{FILTER => DependentColumnFilter.new(Bytes.toBytes("f1"), Bytes.toBytes("c1"), true,CompareFilter::CompareOp.valueOf('EQUAL'), RegexStringComparator.new('[a-z]'))}
ROW                                              COLUMN+CELL
 row-1                                           column=f2:c2, timestamp=1589794115268, value=abc
 row-2                                           column=f2:c2, timestamp=1589794115268, value=1234abc567
2 row(s) in 0.0150 seconds

該比較器直接傳入字元串進行比較,且只支持EQUALNOT_EQUAL兩種比較符。若想使用第一種方式可以傳入regexstring試一下,我的版本有點低暫時不支持,不再演示了。

註意這裡的正則匹配指包含關係,對應底層find()方法。

DependentColumnFilter不支持使用LongComparator比較器,且BitComparatorNullComparator比較器用之甚少,也不再介紹。

到此為止,所有的比較過濾器就總結完畢了。

查看文章全部源代碼請訪以下GitHub地址:

https://github.com/zhoupengbo/demos-bigdata/blob/master/hbase/hbase-filters-demos/src/main/java/com/zpb/demos/DependentColumnFilterDemo.java

掃描二維碼關註博主公眾號

轉載請註明出處!歡迎關註本人微信公眾號【HBase工作筆記】


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 一.Hadoop社區版和發行版 社區版:我們把Apache社區一直開發的Hadoop稱為社區版。簡單的說就是Apache Hadoophttp://hadoop.apache.org/ 發行版:基於Apache Hadoop的基礎上進行商業改造的解決方案,包含一系列定製的管理工具和軟體。 二.Had ...
  • SQL語句中的日期查詢 YYYY --當前年份第一天的前一天 SELECT TRUNC(SYSDATE,'yyyy') - 1 + 8 / 24 FROM DUAL 2019/12/31 上午 08:00:00 --當前年份的第一天 SELECT TRUNC(SYSDATE,'yyyy') + 8 ...
  • 北斗對時設備(GPS校時產品)在數字城市系統中的應用 北斗對時設備(GPS校時產品)在數字城市系統中的應用 京準電子科技官微——ahjzsz 綜述 隨著電腦網路的迅猛發展,網路應用已經非常普遍,眾多領域的網路系統如電力、石化、金融業(證券、銀行)、廣電業(廣播、電視)、交通業(火車、飛機)、軍事( ...
  • Cassandra資料庫通過JMX方式對外提供監控和管理服務。本文講解如何配置和開啟Cassandra的JMX服務。 環境說明 本文是基於以下版本的系統和服務: cassandra 3.11.6 openjdk 1.8.0 mx4j 3.0.2 Ubuntu 18.04.4 LTS 需要說明的是,當 ...
  • [TOC] 1. 前置知識 1.1 InnoDB 索引結構 InnoDB 索引使用的數據結構是 "B+ 樹" 。 百度百科中的結構圖: 一個 m 階 樹的幾個特點: 1. 每個節點可能有最多 m 個子節點 2. 除根結點外,每個結點至少有 個子女,根結點至少有兩個子女 3. 有 k 個子女的結點必有 ...
  • [TOC] 1.Xtrabackup介紹 Xtrabackup是Percona公司專門針對MySQL資料庫開發的一款開源免費的物理備份(熱備)工具,可以對InnoDB和XtraDB等事務引擎的資料庫實現非阻塞(即不鎖表)方式的備份,也可以針對MyISAM等非事務引擎實現鎖表方式備份。 Xtrabac ...
  • 一、什麼是PL/SQL? PL/SQL(Procedure Language/SQL)是oracle在標準的sql語言上的擴展。ql/sql不僅允許嵌入sql語言,還可以定義變數和常量,允許私用條件語句和迴圈語句,允許使用例外處理各種錯誤,這使得它的功能變得更加強大。 PL/SQL開發工具主要有: ...
  • [TOC] 1.資料庫管理員的兩大工作核心 1.1.能夠讓數據安全得到保護 所謂的數據安全,最容易被人誤以為是只有數據丟失,其實還包括數據被脫庫、泄密等方面。 1.2.能7 24小時提供服務 資料庫具備7 24小時提供服務的能力,是資料庫管理員的重要職責。 2.全量備份和增量備份 2.1.全量備份的 ...
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...