MATLAB實例:PCA降維

来源:https://www.cnblogs.com/kailugaji/archive/2019/09/26/11594507.html
-Advertisement-
Play Games

MATLAB實例:PCA降維 作者:凱魯嘎吉 - 博客園 http://www.cnblogs.com/kailugaji/ 1. iris數據 2. MATLAB程式 3. 結果 iris_pca:前兩個主成分 累計貢獻率 可見:前兩個主成分已經占了95%的貢獻程度。這兩個主成分可以近似表示整個數 ...


MATLAB實例:PCA降維

作者:凱魯嘎吉 - 博客園 http://www.cnblogs.com/kailugaji/

1. iris數據

5.1,3.5,1.4,0.2,1
4.9,3.0,1.4,0.2,1
4.7,3.2,1.3,0.2,1
4.6,3.1,1.5,0.2,1
5.0,3.6,1.4,0.2,1
5.4,3.9,1.7,0.4,1
4.6,3.4,1.4,0.3,1
5.0,3.4,1.5,0.2,1
4.4,2.9,1.4,0.2,1
4.9,3.1,1.5,0.1,1
5.4,3.7,1.5,0.2,1
4.8,3.4,1.6,0.2,1
4.8,3.0,1.4,0.1,1
4.3,3.0,1.1,0.1,1
5.8,4.0,1.2,0.2,1
5.7,4.4,1.5,0.4,1
5.4,3.9,1.3,0.4,1
5.1,3.5,1.4,0.3,1
5.7,3.8,1.7,0.3,1
5.1,3.8,1.5,0.3,1
5.4,3.4,1.7,0.2,1
5.1,3.7,1.5,0.4,1
4.6,3.6,1.0,0.2,1
5.1,3.3,1.7,0.5,1
4.8,3.4,1.9,0.2,1
5.0,3.0,1.6,0.2,1
5.0,3.4,1.6,0.4,1
5.2,3.5,1.5,0.2,1
5.2,3.4,1.4,0.2,1
4.7,3.2,1.6,0.2,1
4.8,3.1,1.6,0.2,1
5.4,3.4,1.5,0.4,1
5.2,4.1,1.5,0.1,1
5.5,4.2,1.4,0.2,1
4.9,3.1,1.5,0.1,1
5.0,3.2,1.2,0.2,1
5.5,3.5,1.3,0.2,1
4.9,3.1,1.5,0.1,1
4.4,3.0,1.3,0.2,1
5.1,3.4,1.5,0.2,1
5.0,3.5,1.3,0.3,1
4.5,2.3,1.3,0.3,1
4.4,3.2,1.3,0.2,1
5.0,3.5,1.6,0.6,1
5.1,3.8,1.9,0.4,1
4.8,3.0,1.4,0.3,1
5.1,3.8,1.6,0.2,1
4.6,3.2,1.4,0.2,1
5.3,3.7,1.5,0.2,1
5.0,3.3,1.4,0.2,1
7.0,3.2,4.7,1.4,2
6.4,3.2,4.5,1.5,2
6.9,3.1,4.9,1.5,2
5.5,2.3,4.0,1.3,2
6.5,2.8,4.6,1.5,2
5.7,2.8,4.5,1.3,2
6.3,3.3,4.7,1.6,2
4.9,2.4,3.3,1.0,2
6.6,2.9,4.6,1.3,2
5.2,2.7,3.9,1.4,2
5.0,2.0,3.5,1.0,2
5.9,3.0,4.2,1.5,2
6.0,2.2,4.0,1.0,2
6.1,2.9,4.7,1.4,2
5.6,2.9,3.6,1.3,2
6.7,3.1,4.4,1.4,2
5.6,3.0,4.5,1.5,2
5.8,2.7,4.1,1.0,2
6.2,2.2,4.5,1.5,2
5.6,2.5,3.9,1.1,2
5.9,3.2,4.8,1.8,2
6.1,2.8,4.0,1.3,2
6.3,2.5,4.9,1.5,2
6.1,2.8,4.7,1.2,2
6.4,2.9,4.3,1.3,2
6.6,3.0,4.4,1.4,2
6.8,2.8,4.8,1.4,2
6.7,3.0,5.0,1.7,2
6.0,2.9,4.5,1.5,2
5.7,2.6,3.5,1.0,2
5.5,2.4,3.8,1.1,2
5.5,2.4,3.7,1.0,2
5.8,2.7,3.9,1.2,2
6.0,2.7,5.1,1.6,2
5.4,3.0,4.5,1.5,2
6.0,3.4,4.5,1.6,2
6.7,3.1,4.7,1.5,2
6.3,2.3,4.4,1.3,2
5.6,3.0,4.1,1.3,2
5.5,2.5,4.0,1.3,2
5.5,2.6,4.4,1.2,2
6.1,3.0,4.6,1.4,2
5.8,2.6,4.0,1.2,2
5.0,2.3,3.3,1.0,2
5.6,2.7,4.2,1.3,2
5.7,3.0,4.2,1.2,2
5.7,2.9,4.2,1.3,2
6.2,2.9,4.3,1.3,2
5.1,2.5,3.0,1.1,2
5.7,2.8,4.1,1.3,2
6.3,3.3,6.0,2.5,3
5.8,2.7,5.1,1.9,3
7.1,3.0,5.9,2.1,3
6.3,2.9,5.6,1.8,3
6.5,3.0,5.8,2.2,3
7.6,3.0,6.6,2.1,3
4.9,2.5,4.5,1.7,3
7.3,2.9,6.3,1.8,3
6.7,2.5,5.8,1.8,3
7.2,3.6,6.1,2.5,3
6.5,3.2,5.1,2.0,3
6.4,2.7,5.3,1.9,3
6.8,3.0,5.5,2.1,3
5.7,2.5,5.0,2.0,3
5.8,2.8,5.1,2.4,3
6.4,3.2,5.3,2.3,3
6.5,3.0,5.5,1.8,3
7.7,3.8,6.7,2.2,3
7.7,2.6,6.9,2.3,3
6.0,2.2,5.0,1.5,3
6.9,3.2,5.7,2.3,3
5.6,2.8,4.9,2.0,3
7.7,2.8,6.7,2.0,3
6.3,2.7,4.9,1.8,3
6.7,3.3,5.7,2.1,3
7.2,3.2,6.0,1.8,3
6.2,2.8,4.8,1.8,3
6.1,3.0,4.9,1.8,3
6.4,2.8,5.6,2.1,3
7.2,3.0,5.8,1.6,3
7.4,2.8,6.1,1.9,3
7.9,3.8,6.4,2.0,3
6.4,2.8,5.6,2.2,3
6.3,2.8,5.1,1.5,3
6.1,2.6,5.6,1.4,3
7.7,3.0,6.1,2.3,3
6.3,3.4,5.6,2.4,3
6.4,3.1,5.5,1.8,3
6.0,3.0,4.8,1.8,3
6.9,3.1,5.4,2.1,3
6.7,3.1,5.6,2.4,3
6.9,3.1,5.1,2.3,3
5.8,2.7,5.1,1.9,3
6.8,3.2,5.9,2.3,3
6.7,3.3,5.7,2.5,3
6.7,3.0,5.2,2.3,3
6.3,2.5,5.0,1.9,3
6.5,3.0,5.2,2.0,3
6.2,3.4,5.4,2.3,3
5.9,3.0,5.1,1.8,3

2. MATLAB程式

function [COEFF,SCORE,latent,tsquared,explained,mu,data_PCA]=pca_demo()
x=load('iris.data');
[~,d]=size(x);
k=d-1; %前k個主成分
x=zscore(x(:,1:d-1));  %歸一化數據
[COEFF,SCORE,latent,tsquared,explained,mu]=pca(x);
% 1)獲取樣本數據 X ,樣本為行,特征為列。
% 2)對樣本數據中心化,得S(S = X的各列減去各列的均值)。
% 3)求 S 的協方差矩陣 C = cov(S)
% 4) 對協方差矩陣 C 進行特征分解 [P,Lambda] = eig(C);
% 5)結束。
% 1、輸入參數 X 是一個 n 行 p 列的矩陣。每行代表一個樣本觀察數據,每列則代表一個屬性,或特征。
% 2、COEFF 就是所需要的特征向量組成的矩陣,是一個 p 行 p 列的矩陣,沒列表示一個出成分向量,經常也稱為(協方差矩陣的)特征向量。並且是按照對應特征值降序排列的。所以,如果只需要前 k 個主成分向量,可通過:COEFF(:,1:k) 來獲得。
% 3、SCORE 表示原數據在各主成分向量上的投影。但註意:是原數據經過中心化後在主成分向量上的投影。即通過:SCORE = x0*COEFF 求得。其中 x0 是中心平移後的 X(註意:是對維度進行中心平移,而非樣本。),因此在重建時,就需要加上這個平均值了。
% 4、latent 是一個列向量,表示特征值,並且按降序排列。
% 5、tsquared Hotelling的每個觀測值X的T平方統計量
% 6、explained 由每個主成分解釋的總方差的百分比
% 7、mu 每個變數X的估計平均值
data_PCA=x*COEFF(:,1:k);
latent1=100*latent/sum(latent);%將latent總和統一為100,便於觀察貢獻率
pareto(latent1);%調用matla畫圖 pareto僅繪製累積分佈的前95%,因此y中的部分元素並未顯示
xlabel('Principal Component');
ylabel('Variance Explained (%)');
% 圖中的線表示的累積變數解釋程度
print(gcf,'-dpng','Iris PCA.png');
iris_pac=data_PCA(:,1:2) ;
save iris_pca iris_pac

3. 結果

iris_pca:前兩個主成分

-2.25698063306803	0.504015404227653
-2.07945911889541	-0.653216393612590
-2.36004408158421	-0.317413944570283
-2.29650366000389	-0.573446612971233
-2.38080158645275	0.672514410791076
-2.06362347633724	1.51347826673567
-2.43754533573242	0.0743137171331950
-2.22638326740708	0.246787171742162
-2.33413809644009	-1.09148977019584
-2.18136796941948	-0.447131117450110
-2.15626287481026	1.06702095645556
-2.31960685513084	0.158057945820095
-2.21665671559727	-0.706750478104682
-2.63090249246321	-0.935149145374822
-2.18497164997156	1.88366804891533
-2.24394778052703	2.71328133141014
-2.19539570001472	1.50869601039751
-2.18286635818774	0.512587093716441
-1.88775015418968	1.42633236069007
-2.33213619695782	1.15416686250116
-1.90816386828207	0.429027879924458
-2.19728429051438	0.949277150423224
-2.76490709741649	0.487882574439700
-1.81433337754274	0.106394361814184
-2.22077768737273	0.161644638073716
-1.95048968523510	-0.605862870440206
-2.04521166172712	0.265126114804279
-2.16095425532709	0.550173363315497
-2.13315967968331	0.335516397664229
-2.26121491382610	-0.313827252316662
-2.13739396044139	-0.482326258880086
-1.82582143036022	0.443780130732953
-2.59949431958629	1.82237008322707
-2.42981076672382	2.17809479520796
-2.18136796941948	-0.447131117450110
-2.20373717203888	-0.183722323644913
-2.03759040170113	0.682669420156327
-2.18136796941948	-0.447131117450110
-2.42781878392261	-0.879223932713649
-2.16329994558551	0.291749566745466
-2.27889273592867	0.466429134628597
-1.86545776627869	-2.31991965918865
-2.54929404704891	-0.452301129580194
-1.95772074352968	0.495730895348582
-2.12624969840005	1.16752080832811
-2.06842816583668	-0.689607099127106
-2.37330741591874	1.14679073709691
-2.39018434748641	-0.361180775489047
-2.21934619663183	1.02205856145225
-2.19858869176329	0.0321302060908945
1.10030752013391	0.860230593245533
0.730035752246062	0.596636784545418
1.23796221659453	0.612769614333371
0.395980710562889	-1.75229858398514
1.06901265623960	-0.211050862633647
0.383174475987114	-0.589088965722193
0.746215185580377	0.776098608766709
-0.496201068006129	-1.84269556949638
0.923129796737431	0.0302295549588077
0.00495143780650871	-1.02596403732389
-0.124281108093219	-2.64918765259090
0.437265238506424	-0.0586846858581760
0.549792126592992	-1.76666307900171
0.714770518429262	-0.184815166484382
-0.0371339806719297	-0.431350035919633
0.872966018474250	0.508295314415273
0.346844440799832	-0.189985178614466
0.152880381053472	-0.788085297090142
1.21124542423444	-1.62790202112846
0.156417163578196	-1.29875232891050
0.735791135537219	0.401126570248885
0.470792483676532	-0.415217206131680
1.22388807504403	-0.937773165086814
0.627279600231826	-0.415419947028686
0.698133985336190	-0.0632819273014206
0.870620328215835	0.249871517845242
1.25003445866275	-0.0823442389434431
1.35370481019450	0.327722365822153
0.659915359649250	-0.223597000167979
-0.0471236447211597	-1.05368247816741
0.121128417400412	-1.55837168956507
0.0140710866007487	-1.56813894313840
0.235222818975321	-0.773333046281646
1.05316323317206	-0.634774729305402
0.220677797156699	-0.279909968621073
0.430341476713787	0.852281697154445
1.04590946111265	0.520453696157683
1.03241950881290	-1.38781716762055
0.0668436673617666	-0.211910813930204
0.274505447436587	-1.32537578085168
0.271425764670620	-1.11570381243558
0.621089830946741	0.0274506709978046
0.328903506457842	-0.985598883763833
-0.372380114621411	-2.01119457605980
0.281999617970590	-0.851099454545845
0.0887557702224096	-0.174324544331148
0.223607676665854	-0.379214256409087
0.571967341693057	-0.153206717308028
-0.455486948803962	-1.53432438068788
0.251402252309636	-0.593871222060355
1.84150338645482	0.868786147264828
1.14933941416981	-0.698984450845645
2.19898270027627	0.552618780551384
1.43388176486790	-0.0498435417617587
1.86165398830779	0.290220535935809
2.74500070081969	0.785799704159685
0.357177895625210	-1.55488557249365
2.29531637451915	0.408149356863061
1.99505169024551	-0.721448439846371
2.25998344407884	1.91502747107928
1.36134878398531	0.691631011499905
1.59372545693795	-0.426818952656741
1.87796051113409	0.412949339203311
1.24890257443547	-1.16349352357816
1.45917315700813	-0.442664601834978
1.58649439864337	0.674774813132046
1.46636772102851	0.252347085727036
2.42924030093571	2.54822056527013
3.29809226641255	-0.00235343587272177
1.24979406018816	-1.71184899071237
2.03368323142868	0.904369044486726
0.970663302005081	-0.569267277965818
2.88838806680663	0.396463170625287
1.32475563655861	-0.485135293486995
1.69855040646181	1.01076227706927
1.95119099025002	0.999984474306318
1.16799162725452	-0.317831851008113
1.01637609822602	0.0653241212065782
1.78004554289349	-0.192627479858818
1.85855159177699	0.553527164026207
2.42736549094542	0.245830911619345
2.30834922706014	2.61741528404554
1.85415981777379	-0.184055790370030
1.10756129219332	-0.294997832217552
1.19347091639304	-0.814439294423699
2.79159729280499	0.841927657717863
1.57487925633390	1.06889360300461
1.34254676764379	0.420846092290459
0.920349720485088	0.0191661621187343
1.84736314547313	0.670177571688802
2.00942543830962	0.608358978317639
1.89676252747561	0.683734258412757
1.14933941416981	-0.698984450845645
2.03648602144585	0.861797777652503
1.99500750598298	1.04504903502442
1.86427657131500	0.381543630923962
1.55328823048458	-0.902290843047121
1.51576710303099	0.265903772450991
1.37179554779330	1.01296839034343
0.956095566421630	-0.0222095406309480

累計貢獻率

可見:前兩個主成分已經占了95%的貢獻程度。這兩個主成分可以近似表示整個數據。


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 六星教育php vip視頻(分享) 最近看的一個swoole的課程,應該也算是vip課程了,不是公開的直播課 比較有特點有一定深度,swoole的實戰教程一直也不多,結合swoole構建一個新型框架,最後講解如何實現分散式RPC的調用。 部分課程截圖: 下載鏈接:https://pan.baidu. ...
  • 寫的有不好的地方還請指正 1.下載與安裝 golang下載官網:1. https://golang.google.cn/dl/ 然後這裡我下載的是當前最新版本go1.13 下載完成之後直接雙擊安裝,然後預設是安裝到C盤的C:\Go目錄下,當然安裝的時候可以更改目錄,但是改不改其實無所謂,因為後面創建 ...
  • 認真閱讀,收穫滿滿,向智慧又邁進一步。。。 技術不枯燥,先來點閑聊先說點好事高興一下。前段時間看新聞說,我國正式的空間站建設已在進行當中。下半年,長征五號B運載火箭將在海南文昌航天發射場擇機將空間站核心艙發射升空。預計用2到3年將空間站建好。雖然到時你們不讓我上去,不過我也為這件事出不了什麼力,算扯 ...
  • 目錄 "final使用" "final變數" "final修飾基本數據類型變數和引用" "final類" "final關鍵字的知識點" "final關鍵字的最佳實踐" "final的用法" "關於空白final" "final記憶體分配" "使用final修飾方法會提高速度和效率嗎" "使用final ...
  • 我們知道前臺所顯示的數據一般是傳過去一些list集合封裝的信息,但面對眾多的數據自然不可能是一頁顯示完成, 需要我們進行分頁處理。這裡需要前後臺分別對數據和頁面就行處理和交互,才能形成良好界面。 先從後臺代碼說起,首先傳到前臺的數據不止集合,還需要分頁的一些數據參數,所以這裡我們選擇封裝一個Page ...
  • 這是操作系統系列第 2 篇。 如果你想知道操作系統每天都在做些什麼,那就打開你的資源監視器: 資源監視器截圖,Windows 10 單獨通過這一張圖,我們就能夠總結出操作系統的幾個重要功能: 進程管理 線程管理 記憶體管理 I/O 管理 (包含了磁碟調度) 文件管理 ,這一功能在圖裡沒有表現出來,但我 ...
  • 目標: 瞭解數值型數據、類別型數據特點 應用MinMaxScaler實現對特征數據歸一化 應用StandarScaler實現對特征數據進行標準化 目標: 瞭解數值型數據、類別型數據特點 應用MinMaxScaler實現對特征數據歸一化 應用StandarScaler實現對特征數據進行標準化 目標: ...
  • 一:Appltools下載: 新建: .py文件 ...
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...