[20190328]簡單探究sql語句相關mutexes.txt

来源:https://www.cnblogs.com/lfree/archive/2019/03/29/10619600.html
-Advertisement-
Play Games

[20190328]簡單探究sql語句相關mutexes.txt--//摘要:http://www.askmaclean.com/archives/understanding-oracle-mutex.html雖然Mutex中文翻譯為互斥鎖,但為了和OS mutex充分的區別,所以我們在本文里稱Or ...


[20190328]簡單探究sql語句相關mutexes.txt

--//摘要:http://www.askmaclean.com/archives/understanding-oracle-mutex.html

雖然Mutex中文翻譯為互斥鎖,但為了和OS mutex充分的區別,所以我們在本文里稱Oracle Mutex為Mutex。

Oracle中的mutex,類似於Latch,是一種低級的串列機制,用以控制對SGA中部分共用數據結構的訪問控制。
Oracle中的串列機制有不少,引入它們的目的是避免一個對象出現下述現象:

    當某些進程在訪問該對象時,該資源被重新分配
    當某些進程在修改它時,被其他進程讀取
    當某些進程在修改它時,被其他進程修改
    當某些進程在讀取它時,被其他進程修改

不同於Latch,Mutex的使用更靈活,用途更多,例如:

    哪些需要被mutex保護的共用數據結構可以有自己獨立的mutex,即一個對象擁有自己獨立的mutex,不像Latch往往一個需要保護大量
    對象,舉例來說,每一個父游標有其對應的mutex, 而每一個子游標也有其對應的mutex

    每一個數據結構可能有一個或多個mutex保護,每一個mutex負責保護其結構的不同部分
    當然一個mutex也可以用來保護多於一個的數據結構

理論上mutex即可以存放在其保護的結構本身中(其實是嵌入在結構里),也可以存放在其他地方。 一般情況下Mutex是在數據結構需要被
保護時動態創建出來的。 如是嵌在需要保護結構體內的mutex,則當 所依附的數據結構被清理時 該mutex也將被摧毀。

Mutex帶來的好處

雖然mutex和latch都是Oracle中的串列機制,但是mutex具有一些latch沒有的好處

更輕量級且更快

Mutex作為Latch的替代品,具有更快速獲得,更小等優勢。 獲取一個mutex進需要大約30~35個指令, 而Latch則需要150~200個指令。一
個mutex結構的大小大約為16 bytes,而在10.2版本中一個latch需要112個bytes,在更早的版本中是200個bytes。 從200個bytes 精簡到
112個是通過減少不必要的統計指標 SLEEP1~SLEEP11、WAITERS_WOKEN, WAITS_HOLDING_LATCH等從而實現的。今後我們將看到更多關於
Latch的代碼優化。

減少偽爭用

典型情況下一個Latch保護多個對象。 當一個Latch保護多個熱對象時,並行地對這些對象的頻繁訪問讓latch本身變成性能的串列點。
這也就是我們此處說的偽爭用點, 因為爭用是發生在這個串列保護的機制上,而不是進程去訪問的對象本身。與latch不同, 使用mutex
的情況下Oracle開發人員可以為每一個要保護的數據結構創建一個獨立的mutex。 這意味著Latch的那種偽爭用將大大減少,因為每一個
對象均被自己獨立擁有的mutex保護

--//我想通過測試說明問題.

1.環境:
--//session 1:
SCOTT@book> @ ver1
PORT_STRING         VERSION        BANNER
------------------- -------------- --------------------------------------------------------------------------------
x86_64/Linux 2.4.xx 11.2.0.4.0     Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production

$ cat m2.txt
set verify off
host sleep $(echo &&3/50| bc -l )
insert into job_times values ( sys_context ('userenv', 'sid') ,dbms_utility.get_time ,'&&2') ;
commit ;
declare
v_id number;
v_d date;
begin
    for i in 1 .. &&1 loop
        --select  1 into v_id from dual ;
        --select  sysdate into v_d from dual ;
        select deptno into v_id from dept where deptno=10;
    end loop;
end ;
/
update job_times set time_ela = dbms_utility.get_time - time_ela where sid=sys_context ('userenv', 'sid') and method='&&2';
commit;
quit

$ seq 150 | xargs -I {}  -P 150 bash -c  "sqlplus -s -l scott/book @m2.txt 1e6 C2_150 {} >/dev/null"

--//執行以上命令後,由於大量的sql執行語句相同,出現cursor: pin S.可以執行多次,避免語句從共用池刷出.
--//註意oracle圍繞mutex的視圖很少,僅僅V$MUTEX_SLEEP,V$MUTEX_SLEEP_HISTORY,指令少結構體小,這樣記錄的診斷信息少.

2.首先看看mutex在哪裡?
--//首先確定mutex_addr在那裡.
--//sesson 1:
SCOTT@book> column LOCATION format a40
SCOTT@book> select * from V$MUTEX_SLEEP order by 3 ;
MUTEX_TYPE           LOCATION                     SLEEPS  WAIT_TIME
-------------------- -------------------------- -------- ----------
Library Cache        kglget1   1                       1          0
Library Cache        kglini1   32                      1          0
Library Cache        kgldtin1  42                      1          0
Library Cache        kglati1   45                      2          0
Library Cache        kglnti1   46                      3          0
Library Cache        kglllal1 109                      6          0
Library Cache        kgllldl2 112                      7          0
Library Cache        kglllal3 111                     10          0
Library Cache        kglpnal1  90                     17          0
Library Cache        kgllkdl1  85                     18          0
Library Cache        kglpndl1  95                     27          0
Library Cache        kglget2   2                      28          0
Library Cache        kgllkc1   57                     28          0
Library Cache        kglpin1   4                      29          0
Cursor Pin           kkslce [KKSCHLPIN2]             130          0
Library Cache        kglhdgn2 106                    475          0
Cursor Pin           kksfbc [KKSCHLFSP2]          649446          0
Cursor Pin           kksLockDelete [KKSCHLPIN6]  1109496          0
18 rows selected.
--//僅僅知道MUTEX_TYPE=Cursor Pin ,LOCATION=kksLockDelete [KKSCHLPIN6],kksfbc [KKSCHLFSP2]的sleep很高,具體在那裡,那個語
--//句引起的問題,明顯診斷信息不足,
--//而僅僅mutex出現阻塞sleep後,oracle才會在視圖V$MUTEX_SLEEP_HISTORY留下信息,不然很難定位.

--//session 2:
SYS@book> @ mutexy 3
old  21: ORDER BY sum_sleeps DESC ) where rownum<= &1
new  21: ORDER BY sum_sleeps DESC ) where rownum<= 3
      HASH SUM_SLEEPS   SUM_GETS LOCATION                       MUTEX_TYPE           MUTEX_ADDR       SQLID         KGLNAOWN C100
---------- ---------- ---------- ------------------------------ -------------------- ---------------- ------------- -------- ---------------------------------------
1692266099     770212 1.8476E+10 kksLockDelete [KKSCHLPIN6]     Cursor Pin           000000007DFACAB8 a31kd5tkdvvmm          SELECT DEPTNO FROM DEPT WHERE DEPTNO=10
1692266099     408706 9792073012 kksfbc [KKSCHLFSP2]            Cursor Pin           000000007DFACAB8 a31kd5tkdvvmm          SELECT DEPTNO FROM DEPT WHERE DEPTNO=10
 991821498        115      16076 kglhdgn2 106                   Library Cache        000000007C638348                        RECO.ORACLE.COM
--//MUTEX_ADDR = 000000007DFACAB8

SYS@book> @ fcha 000000007DFACAB8
Find in which heap (UGA, PGA or Shared Pool) the memory address 000000007DFACAB8 resides...
WARNING!!! This script will query X$KSMSP, which will cause heavy shared pool latch contention
in systems under load and with large shared pool. This may even completely hang
your instance until the query has finished! You probably do not want to run this in production!
Press ENTER to continue, CTRL+C to cancel...
old  14:     to_number(substr('&1', instr(lower('&1'), 'x')+1) ,'XXXXXXXXXXXXXXXX')
new  14:     to_number(substr('000000007DFACAB8', instr(lower('000000007DFACAB8'), 'x')+1) ,'XXXXXXXXXXXXXXXX')
old  32:     to_number(substr('&1', instr(lower('&1'), 'x')+1) ,'XXXXXXXXXXXXXXXX')
new  32:     to_number(substr('000000007DFACAB8', instr(lower('000000007DFACAB8'), 'x')+1) ,'XXXXXXXXXXXXXXXX')
old  50:     to_number(substr('&1', instr(lower('&1'), 'x')+1) ,'XXXXXXXXXXXXXXXX')
new  50:     to_number(substr('000000007DFACAB8', instr(lower('000000007DFACAB8'), 'x')+1) ,'XXXXXXXXXXXXXXXX')
LOC KSMCHPTR           KSMCHIDX   KSMCHDUR KSMCHCOM           KSMCHSIZ KSMCHCLS   KSMCHTYP KSMCHPAR
--- ---------------- ---------- ---------- ---------------- ---------- -------- ---------- ----------------
SGA 000000007DFAC3F0          1          1 KGLH0^64ddee73         4096 recr           4095 000000007E0AE4B0

--//KSMCHCOM=KGLH0^64ddee73 ,KSMCHCOM有信息KGLH0,可以猜測在sql語句的某個父或者子游標的堆0中.

SYS@book> @ sharepool/shp4 a31kd5tkdvvmm 0
old  20:  WHERE kglobt03 = '&1'  or kglhdpar='&1' or kglhdadr='&1' or KGLNAHSH= &2
new  20:  WHERE kglobt03 = 'a31kd5tkdvvmm'  or kglhdpar='a31kd5tkdvvmm' or kglhdadr='a31kd5tkdvvmm' or KGLNAHSH= 0
TEXT           KGLHDADR         KGLHDPAR         C40                                        KGLHDLMD   KGLHDPMD   KGLHDIVC KGLOBHD0         KGLOBHD6           KGLOBHS0   KGLOBHS6   KGLOBT16   N0_6_16        N20   KGLNAHSH KGLOBT03        KGLOBT09
-------------- ---------------- ---------------- ---------------------------------------- ---------- ---------- ---------- ---------------- ---------------- ---------- ---------- ---------- --------- ---------- ---------- ------------- ----------
子游標句柄地址 000000007E1B07D8 000000007E3B7830 SELECT DEPTNO FROM DEPT WHERE DEPTNO=10           1          2          0 000000007E23F080 000000007DFACB60       4528       8088       3072     15688      15688 1692266099 a31kd5tkdvvmm          0
父游標句柄地址 000000007E3B7830 000000007E3B7830 SELECT DEPTNO FROM DEPT WHERE DEPTNO=10           1          0          0 000000007E0AE4B0 00                     4720          0          0      4720       4720 1692266099 a31kd5tkdvvmm      65535

--//與父游標句柄地址的KGLOBHD0='000000007E0AE4B0',註意這個地址是堆描述符地址.也可以理解為指向堆0的指針,
--//也就是這個mutex結構體在父游標的堆0裡面.

SYS@book> SELECT * FROM x$ksmsp WHERE TO_NUMBER ('000000007E0AE4B0', 'xxxxxxxxxxxxxxxx') between TO_NUMBER(KSMCHPTR,'xxxxxxxxxxxxxxxx') and TO_NUMBER(KSMCHPTR, 'xxxxxxxxxxxxxxxx')+KSMCHSIZ-1;
old   1: SELECT * FROM x$ksmsp WHERE TO_NUMBER ('&&1', 'xxxxxxxxxxxxxxxx') between TO_NUMBER(KSMCHPTR, 'xxxxxxxxxxxxxxxx') and TO_NUMBER(KSMCHPTR, 'xxxxxxxxxxxxxxxx')+KSMCHSIZ
new   1: SELECT * FROM x$ksmsp WHERE TO_NUMBER ('000000007E0AE4B0', 'xxxxxxxxxxxxxxxx') between TO_NUMBER(KSMCHPTR, 'xxxxxxxxxxxxxxxx') and TO_NUMBER(KSMCHPTR, 'xxxxxxxxxxxxxxxx')+KSMCHSIZ
ADDR                   INDX    INST_ID   KSMCHIDX   KSMCHDUR KSMCHCOM         KSMCHPTR           KSMCHSIZ KSMCHCLS   KSMCHTYP KSMCHPAR
---------------- ---------- ---------- ---------- ---------- ---------------- ---------------- ---------- -------- ---------- ----------------
00007F24581306C8       3192          1          1          1 KGLDA            000000007E0AE448        240 freeabl           0 00

3.人為加鎖看看:
--//session 2:
SYS@book> @ pt 'select * from V$MUTEX_SLEEP_HISTORY where MUTEX_IDENTIFIER=1692266099 and rownum=1'
old  10:              passing xmltype(cursor( &1 ))
new  10:              passing xmltype(cursor( select * from V$MUTEX_SLEEP_HISTORY where MUTEX_IDENTIFIER=1692266099 and rownum=1 ))
ROW_NUM COL_NAME           COL_VALUE
------- ------------------ --------------------------
      1 MUTEX_IDENTIFIER   1692266099
        SLEEP_TIMESTAMP    2019-03-28 15:36:51.649428
        MUTEX_TYPE         Cursor Pin
        GETS               599013225
        SLEEPS             25361
        REQUESTING_SESSION 7
        BLOCKING_SESSION   35
        LOCATION           kksLockDelete [KKSCHLPIN6]
        MUTEX_VALUE        000000230000001E
        P1                 1
        P1RAW              00
        P2                 0
        P3                 0
        P4                 0
14 rows selected.
--//MUTEX_VALUE=000000230000001E.0x00000023=35,表示阻塞的SESSION的sid.  
--//session 1:
SCOTT@book> @ spid
       SID    SERIAL# PROCESS                  SERVER    SPID       PID  P_SERIAL# C50
---------- ---------- ------------------------ --------- ------ ------- ---------- --------------------------------------------------
       295          7 11295                    DEDICATED 11296       21          4 alter system kill session '295,7' immediate;
--//sid=295 , 295=0x127.

SYS@book> oradebug setmypid
Statement processed.

SYS@book> oradebug poke 0x000000007DFACAB8 8 0x0000012700000127
BEFORE: [07DFACAB8, 07DFACAC0) = 00000000 00000000
AFTER:  [07DFACAB8, 07DFACAC0) = 00000127 00000127

SCOTT@book> @ m2.txt 1 c1 0
1 row created.
Commit complete.
declare
*
ERROR at line 1:
ORA-04024: self-deadlock detected while trying to mutex pin cursor 0x07E1B07D8
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ORA-06512: at line 8
2 rows updated.
Commit complete.
--//註意看下劃線,這是自鎖.oracle設計夠嚴謹的,什麼情況下會出現ORA-04024錯誤.
--//這裡的0x07E1B07D8是子游標句柄地址.

--//session 2:
SYS@book> @ spid
       SID    SERIAL# PROCESS                  SERVER    SPID       PID  P_SERIAL# C50
---------- ---------- ------------------------ --------- ------ ------- ---------- --------------------------------------------------
         1         31 11248                    DEDICATED 11249       24          9 alter system kill session '1,31' immediate;
--//sid=1.
SYS@book> oradebug poke 0x000000007DFACAB8 8 0x0000000100000127
BEFORE: [07DFACAB8, 07DFACAC0) = 00000127 00000127
AFTER:  [07DFACAB8, 07DFACAC0) = 00000127 00000001
--//註意一個細節,intel cpu系列的大小頭問題. 4個4個位元組顛倒的.

SYS@book> oradebug peek 0x000000007DFACAB8 8
[07DFACAB8, 07DFACAC0) = 00000127 00000001

--//session 1:
SCOTT@book> @ m2.txt 1 c1 0
1 row created.
Commit complete.
--//掛起!!
--//說明:一般測試環境沒有用戶登錄的情況下,下次登錄sid不會變化.

--//session 2:
SYS@book> @ wait
P1RAW            P2RAW            P3RAW                    P1         P2         P3        SID    SERIAL#       SEQ# EVENT         STATUS   STATE   WAIT_TIME_MICRO SECONDS_IN_WAIT WAIT_CLASS
---------------- ---------------- ---------------- ---------- ---------- ---------- ---------- ---------- ---------- ------------- -------- ------- --------------- --------------- -----------
0000000064DDEE73 0000000100000127 0000000500000000 1692266099 4294967591 2.1475E+10        295         13         30 cursor: pin S ACTIVE   WAITING        50465005              50 Concurrency
--//註意P2RAW.

SYS@book> oradebug poke 0x000000007DFACAB8 8 0x000000000000000
BEFORE: [07DFACAB8, 07DFACAC0) = 00000127 00000001
AFTER:  [07DFACAB8, 07DFACAC0) = 00000000 00000000

--//session 1:
--//執行完成退出.

4.看看一些細節:
--//session 1:
SCOTT@book> @ spid
       SID    SERIAL# PROCESS                  SERVER    SPID       PID  P_SERIAL# C50
---------- ---------- ------------------------ --------- ------ ------- ---------- --------------------------------------------------
       295         17 11477                    DEDICATED 11478       21          9 alter system kill session '295,17' immediate;
--//SPID=1147811358

--//session 2:
SYS@book> oradebug poke 0x000000007DFACAB8 8 0x0000000100000127
BEFORE: [07DFACAB8, 07DFACAC0) = 00000000 00000000
AFTER:  [07DFACAB8, 07DFACAC0) = 00000127 00000001

--//打開新的終端執行如下命令:
$ strace -fTtt -p 11478 2>&1 | tee /tmp/m.txt

--//session 1:
SCOTT@book> @ m2.txt 1 c1 0
1 row created.
Commit complete.
--//再次掛起.等1分鐘以上.
--//session 2:
SYS@book> oradebug poke 0x000000007DFACAB8 8 0x000000000000000
BEFORE: [07DFACAB8, 07DFACAC0) = 00000127 00000001
AFTER:  [07DFACAB8, 07DFACAC0) = 00000000 00000000

--//分析/tmp/m.txt.
$ awk '{print $2}' /tmp/m.txt  | uniq -c | egrep "semtimedop| getrusag"
...
      1 getrusage(RUSAGE_SELF,
      2 getrusage(RUSAGE_SELF,
      7 getrusage(RUSAGE_SELF,
      1 getrusage(RUSAGE_SELF,
    117 semtimedop(309166080,
      2 getrusage(RUSAGE_SELF,
    181 semtimedop(309166080,
      2 getrusage(RUSAGE_SELF,
    182 semtimedop(309166080,
      2 getrusage(RUSAGE_SELF,
    182 semtimedop(309166080,
      2 getrusage(RUSAGE_SELF,
    ....
    182 semtimedop(309166080,
      2 getrusage(RUSAGE_SELF,
    167 semtimedop(309166080,
      1 getrusage(RUSAGE_SELF,
      4 getrusage(RUSAGE_SELF,
      6 getrusage(RUSAGE_SELF,
      2 getrusage(RUSAGE_SELF,
      1 getrusage(RUSAGE_SELF,
      2 getrusage(RUSAGE_SELF,
      1 getrusage(RUSAGE_SELF,
      1 getrusage(RUSAGE_SELF,
      2 getrusage(RUSAGE_SELF,
      3 getrusage(RUSAGE_SELF,
      1 getrusage(RUSAGE_SELF,
      2 getrusage(RUSAGE_SELF,
--//大約調用semtimedop 182次後(大約2秒),調用2次getrusage.截取其中1段.
16:04:56.410571 getrusage(RUSAGE_SELF, {ru_utime={0, 33994}, ru_stime={0, 33994}, ...}) = 0 <0.000020>
16:04:56.410676 getrusage(RUSAGE_SELF, {ru_utime={0, 33994}, ru_stime={0, 33994}, ...}) = 0 <0.000017>
16:04:56.410785 semtimedop(309166080, 0x7fff83068fd0, 1, {0, 10000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.010684>
16:04:56.421565 semtimedop(309166080, 0x7fff83068fd0, 1, {0, 10000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.010886>
16:04:56.432559 semtimedop(309166080, 0x7fff83068fd0, 1, {0, 10000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.010894>
...
16:04:58.368564 semtimedop(309166080, 0x7fff83068fd0, 1, {0, 10000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.010889>
16:04:58.379561 semtimedop(309166080, 0x7fff83068fd0, 1, {0, 10000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.010888>
16:04:58.390557 semtimedop(309166080, 0x7fff83068fd0, 1, {0, 10000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.010905>
16:04:58.401570 semtimedop(309166080, 0x7fff83068fd0, 1, {0, 10000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.010883>
16:04:58.412548 getrusage(RUSAGE_SELF, {ru_utime={0, 39993}, ru_stime={0, 38994}, ...}) = 0 <0.000019>
16:04:58.412648 getrusage(RUSAGE_SELF, {ru_utime={0, 39993}, ru_stime={0, 38994}, ...}) = 0 <0.000017>

--//大家可以man semtimedop或者man getrusage表示什麼意思.摘要一段:
$ man semtimedop
NAME
       semop, semtimedop - semaphore operations
       int semtimedop(int semid, struct sembuf *sops, unsigned nsops, struct timespec *timeout);

semtimedop() behaves identically to semop() except that in those cases were the calling process would sleep, the
duration of that sleep is limited by the amount of elapsed time specified by the timespec structure whose address is
passed in the timeout parameter.  If the specified time limit has been reached, semtimedop() fails with errno set to
EAGAIN (and none of the operations in sops is performed).  If the timeout parameter is NULL, then semtimedop() behaves
exactly like semop().

--//翻譯如下:
semtimedop()的行為與semop相同(),但在這些情況下,調用進程將休眠,睡眠的持續時間受時間規格結構指定的經過時間的限制,其地址
是在超時參數中傳遞。如果已達到指定的時間限制,則semtimedop()失敗,errno設置為再次(不執行sop中的操作)。如果超時參數為空
,則semtimedop()行為就像semop()。

16:04:56.410785 semtimedop(309166080, 0x7fff83068fd0, 1, {0, 10000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.010684>
--//{0, 10000000} 是 timespec. 前面單位是秒,後面單位是納秒(毫微秒) 1秒=10^9納秒, 10000000/10^9 = .01.
--//這樣每次調用semtimedop需要0.010xXX秒.
--//我的理解相當於不斷spin,檢查這個資源是否可用.2秒後調用getrusage.

--//session 2:
SYS@book> @ hide mutex
NAME               DESCRIPTION       DEFAULT_VALUE SESSION_VALUE SYSTEM_VALUE
------------------ ----------------- ------------- ------------- ------------
_mutex_spin_count  Mutex spin count  TRUE          255           255
_mutex_wait_scheme Mutex wait scheme TRUE          2             2
_mutex_wait_time   Mutex wait time   TRUE          1             1

5.修改這些隱含參數看看:
--//session 2:
SYS@book> alter system set "_mutex_wait_time"=100 scope=memory;
System altered.

--//session 1:
SCOTT@book> @ spid
       SID    SERIAL# PROCESS                  SERVER    SPID       PID  P_SERIAL# C50
---------- ---------- ------------------------ --------- ------ ------- ---------- --------------------------------------------------
        37         79 11990                    DEDICATED 11991       26         19 alter system kill session '37,79' immediate
--//SID=37 ,37=0x25.

--//session 2:
SYS@book> oradebug poke 0x000000007DFACAB8 8 0x0000000100000025
BEFORE: [07DFACAB8, 07DFACAC0) = 00000000 00000000
AFTER:  [07DFACAB8, 07DFACAC0) = 00000025 00000001

--//打開新的終端執行如下命令:
$ strace -fttT -p 11956 2>&1 | tee /tmp/m1.txt
16:45:21.034782 getrusage(RUSAGE_SELF, {ru_utime={0, 300954}, ru_stime={0, 31995}, ...}) = 0 <0.000034>
16:45:21.034936 semtimedop(309166080, 0x7fff3961cd50, 1, {1, 0}) = -1 EAGAIN (Resource temporarily unavailable) <1.000684>
16:45:22.035733 semtimedop(309166080, 0x7fff3961cd50, 1, {1, 0}) = -1 EAGAIN (Resource temporarily unavailable) <1.000669>
16:45:23.036517 getrusage(RUSAGE_SELF, {ru_utime={0, 300954}, ru_stime={0, 31995}, ...}) = 0 <0.000033>
16:45:23.036668 getrusage(RUSAGE_SELF, {ru_utime={0, 300954}, ru_stime={0, 31995}, ...}) = 0 <0.000031>
16:45:23.036819 semtimedop(309166080, 0x7fff3961cd50, 1, {1, 0}) = -1 EAGAIN (Resource temporarily unavailable) <1.000693>
16:45:24.037629 semtimedop(309166080, 0x7fff3961cd50, 1, {1, 0}) = -1 EAGAIN (Resource temporarily unavailable) <1.000844>
16:45:25.038587 getrusage(RUSAGE_SELF, {ru_utime={0, 301954}, ru_stime={0, 31995}, ...}) = 0 <0.000032>
16:45:25.038734 getrusage(RUSAGE_SELF, {ru_utime={0, 301954}, ru_stime={0, 31995}, ...}) = 0 <0.000035>
16:45:25.038883 semtimedop(309166080, 0x7fff3961cd50, 1, {1, 0}) = -1 EAGAIN (Resource temporarily unavailable) <1.000709>
16:45:26.039702 semtimedop(309166080, 0x7fff3961cd50, 1, {1, 0}) = -1 EAGAIN (Resource temporarily unavailable) <1.000822>
16:45:27.040680 getrusage(RUSAGE_SELF, {ru_utime={0, 301954}, ru_stime={0, 31995}, ...}) = 0 <0.000029>
16:45:27.040805 getrusage(RUSAGE_SELF, {ru_utime={0, 301954}, ru_stime={0, 31995}, ...}) = 0 <0.000017>
16:45:27.040909 semtimedop(309166080, 0x7fff3961cd50, 1, {1, 0}) = -1 EAGAIN (Resource temporarily unavailable) <1.000680>
16:45:28.041693 semtimedop(309166080, 0x7fff3961cd50, 1, {1, 0}) = -1 EAGAIN (Resource temporarily unavailable) <1.000819>
16:45:29.042627 getrusage(RUSAGE_SELF, {ru_utime={0, 301954}, ru_stime={0, 31995}, ...}) = 0 <0.000033>
16:45:29.042780 getrusage(RUSAGE_SELF, {ru_utime={0, 301954}, ru_stime={0, 31995}, ...}) = 0 <0.000034>
--//現在是間隔1秒調用semtimedop. 也就是改變_mutex_wait_time等待時間(單位cs).我的理解在spin 255次不成功sleep 1秒.
--//註:semtimedop , spin次數來源這裡(_mutex_spin_count=255),然後sleep,再次喚醒.
--//session 2:
SYS@book> alter system set "_mutex_wait_time"=10 scope=memory;
System altered.

--//重新測試:
16:49:32.057570 getrusage(RUSAGE_SELF, {ru_utime={0, 29995}, ru_stime={0, 18997}, ...}) = 0 <0.000019>
16:49:32.057682 getrusage(RUSAGE_SELF, {ru_utime={0, 29995}, ru_stime={0, 18997}, ...}) = 0 <0.000019>
16:49:32.057796 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100747>
16:49:32.158640 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100834>
16:49:32.259582 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100928>
16:49:32.360618 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100856>
16:49:32.461584 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100890>
16:49:32.562583 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100924>
16:49:32.663615 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100858>
16:49:32.764582 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100928>
16:49:32.865619 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100855>
16:49:32.966582 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100909>
16:49:33.067606 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100853>
16:49:33.168602 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100809>
16:49:33.269536 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100879>
16:49:33.370541 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100854>
16:49:33.471520 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100872>
16:49:33.572516 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100915>
16:49:33.673559 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100849>
16:49:33.774533 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100899>
16:49:33.875556 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100842>
16:49:33.976519 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100887>
16:49:34.077528 getrusage(RUSAGE_SELF, {ru_utime={0, 30995}, ru_stime={0, 18997}, ...}) = 0 <0.000031>
16:49:34.077679 getrusage(RUSAGE_SELF, {ru_utime={0, 30995}, ru_stime={0, 18997}, ...}) = 0 <0.000031>
16:49:34.077827 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100601>
16:49:34.178538 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100878>
16:49:34.279542 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100854>
16:49:34.380520 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100891>
16:49:34.481551 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100866>
16:49:34.582536 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100886>
16:49:34.683545 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100869>
16:49:34.784537 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100874>
16:49:34.885552 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100868>
16:49:34.986539 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100874>
16:49:35.087538 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100855>
16:49:35.188519 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100890>
16:49:35.289535 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100901>
16:49:35.390564 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100880>
16:49:35.491562 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100836>
16:49:35.592519 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100912>
16:49:35.693555 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100861>
16:49:35.794537 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100892>
16:49:35.895553 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100843>
16:49:35.996518 semtimedop(309166080, 0x7fffbe3108a0, 1, {0, 100000000}) = -1 EAGAIN (Resource temporarily unavailable) <0.100876>
16:49:36.097508 getrusage(RUSAGE_SELF, {ru_utime={0, 31995}, ru_stime={0, 19996}, ...}) = 0 <0.000030>
16:49:36.097635 getrusage(RUSAGE_SELF, {ru_utime={0, 31995}, ru_stime={0, 19996}, ...}) = 0 <0.000027>
--//變成了0.1秒.
--//註意一個細節,如果減去_mutex_wait_time時間,可以發現後面的時間都在0.0006xx-0.00090x之間.
--//取一段計算看看
0.100601+0.100878+0.100854+0.100891+0.100866+0.100886+0.100869+0.100874+0.100868+0.100874+0.100855+0.100890
+0.100901+0.100880+0.100836+0.100912+0.100861+0.100892+0.100843+0.100876= 2.017207
2.017207/20 = .10086035000000000000
--//取平均0.000860秒=860微秒.如果spin=255次的話.每次0.000860/255 = 0.0000034秒
--//另外我修改_mutex_spin_count參數,好像調用semtimedop時間不會變化,不知道我理解錯誤在哪裡?

--//session 2:
SYS@book> alter system set "_mutex_wait_time"=1 scope=memory;
System altered.

SYS@book> alter system set "_mutex_wait_scheme"=0 scope=memory;
System altered.

$ awk '{print $2}' /tmp/m2.txt  | uniq -c |egrep "sched_yield|select"|head
     99 sched_yield()
      1 select(0,
     99 sched_yield()
      1 select(0,
     99 sched_yield()
      1 select(0,
     99 sched_yield()
      1 select(0,
     99 sched_yield()
      1 select(0,
--//調用99次sched_yield,然後1次seelct.
--//截取一段
16:51:53.763611 sched_yield()           = 0 <0.000025>
16:51:53.763710 sched_yield()           = 0 <0.000020>
16:51:53.763797 sched_yield()           = 0 <0.000025>
16:51:53.763896 sched_yield()           = 0 <0.000023>
16:51:53.763993 sched_yield()           = 0 <0.000023>
16:51:53.764089 sched_yield()           = 0 <0.000023>
16:51:53.764206 select(0, [], [], [], {0, 1000}) = 0 (Timeout) <0.001109>
16:51:53.765424 sched_yield()           = 0 <0.000024>
16:51:53.765530 sched_yield()           = 0 <0.000023>
16:51:53.765624 sched_yield()           = 0 <0.000022>
--//如果是_mutex_wait_scheme=0,調用是sched_yield 99次,然後1次select.

$ man sched_yield
SCHED_YIELD(2)             Linux Programmer's Manual            SCHED_YIELD(2)

NAME
       sched_yield - yield the processor

SYNOPSIS
       #include <sched.h>
       int sched_yield(void);

DESCRIPTION
       A process can relinquish the processor voluntarily without blocking by calling sched_yield().  The process will
       then be moved to the end of the queue for its static priority and a new process gets to run.

       Note: If the current process is the only process in the highest priority list at that time, this process will
       continue to run after a call to sched_yield().

       POSIX systems on which sched_yield() is available define _POSIX_PRIORITY_SCHEDULING in <unistd.h>.

--//對於select函數不是很理解.不過裡面的時間單位是秒,微妙.
$ man select
NAME
       select, pselect, FD_CLR, FD_ISSET, FD_SET, FD_ZERO - synchronous I/O multiplexing

DESCRIPTION
       select() and pselect() allow a program to monitor multiple file descriptors, waiting until one or more of the
       file descriptors become "ready" for some class of I/O operation (e.g., input possible).  A file descriptor is
       considered ready

       if it is possible to perform the corresponding I/O operation (e.g., read(2)) without blocking.

       The operation of select() and pselect() is identical, with three differences:

       (i)    select() uses a timeout that is a struct timeval (with seconds and microseconds), while pselect() uses a
       struct timespec (with seconds and nanoseconds).

       (ii)   select() may update the timeout argument to indicate how much time was left.  pselect() does not change
       this argument.

       (iii)  select() has no sigmask argument, and behaves as pselect() called with NULL sigmask.

       Three independent sets of file descriptors are watched.  Those listed in readfds will be watched to see if
       characters become available for reading (more precisely, to see if a read will not block; in particular,  a  file
       descriptor  is also  ready on end-of-file), those in writefds will be watched to see if a write will not block,
       and those in exceptfds will be watched for exceptions.  On exit, the sets are modified in place to indicate which
       file descriptors actually changed status.  Each of the three file descriptor sets may be specified as NULL if no
       file descriptors are to be watched for the corresponding class of events.

       Four macros are provided to manipulate the sets.  FD_ZERO() clears a set.  FD_SET() and FD_CLR() respectively add
       and remove a given file descriptor from a set.  FD_ISSET() tests to see if a file descriptor is part of the set;
       this  is  useful after select() returns.

       nfds is the highest-numbered file descriptor in any of the three sets, plus 1.

       timeout is an upper bound on the amount of time elapsed before select() returns. It may be zero, causing select()
       to return immediately. (This is useful for polling.) If timeout is NULL (no timeout), select() can block
       indefinitely.

       sigmask  is a pointer to a signal mask (see sigprocmask(2)); if it is not NULL, then pselect() first replaces the
       current signal mask by the one pointed to by sigmask, then does the 'select' function, and then restores the
       original signal mask.
...
The timeout
    The time structures involved are defined in <sys/time.h> and look like

      struct timeval {
          long    tv_sec;         /* seconds */
          long    tv_usec;        /* microseconds */
      };

--//修改_mutex_wait_scheme=1看看.
--//session 2:
SYS@book> alter system set "_mutex_wait_scheme"=1 scope=memory;
System altered.

$ awk '{print $2}' /tmp/m3.txt  | uniq -c
$ awk '{print $2}' /tmp/m3.txt  | uniq -c | egrep "select|getrusage"
...
      2 getrusage(RUSAGE_SELF,
      7 getrusage(RUSAGE_SELF,
      1 getrusage(RUSAGE_SELF,
   1387 select(0,
      2 getrusage(RUSAGE_SELF,
   1684 select(0,
      2 getrusage(RUSAGE_SELF,
   1675 select(0,
      2 getrusage(RUSAGE_SELF,
   1635 select(0,
      2 getrusage(RUSAGE_SELF,
   1615 select(0,
      2 getrusage(RUSAGE_SELF,
   1617 select(0,
      2 getrusage(RUSAGE_SELF,
   1616 select(0,
      2 getrusage(RUSAGE_SELF,
   1615 select(0,
      2 getrusage(RUSAGE_SELF,
   1616 select(0,
      2 getrusage(RUSAGE_SELF,
   1619 select(0,
      2 getrusage(RUSAGE_SELF,
   1611 select(0,
      2 getrusage(RUSAGE_SELF,
    766 select(0,
      1 getrusage(RUSAGE_SELF,
      4 getrusage(RUSAGE_SELF,

--//截取一段:
17:06:45.648350 sched_yield()           = 0 <0.000037>
17:06:45.648570 select(0, [], [], [], {0, 1000}) = 0 (Timeout) <0.001082>
17:06:45.649750 select(0, [], [], [], {0, 1000}) = 0 (Timeout) <0.001115>
17:06:45.650979 select(0, [], [], [], {0, 1000}) = 0 (Timeout) <0.001111>
...
17:06:47.290475 select(0, [], [], [], {0, 1000}) = 0 (Timeout) <0.001099>
17:06:47.291645 select(0, [], [], [], {0, 1000}) = 0 (Timeout) <0.001138>
17:06:47.292862 getrusage(RUSAGE_SELF, {ru_utime={0, 61990}, ru_stime={0, 67989}, ...}) = 0 <0.000021>
17:06:47.292968 getrusage(RUSAGE_SELF, {ru_utime={0, 61990}, ru_stime={0, 67989}, ...}) = 0 <0.000018>
17:06:47.293111 select(0, [], [], [], {0, 1000}) = 0 (Timeout) <0.001095>

--//還原:
--//session 2:
SYS@book> alter system set "_mutex_wait_scheme"=2 scope=memory;
System altered.

--//視乎_mutex_wait_scheme參數調整mutex的方式.

6.總結:
--//不小心寫的太長.對於os,oracle等許多概念不是很清楚,做這探究難度太大...
--//網上找了一段資料:

* _mutex_spin_count (Integer)
- This sets the number of times to spin before yielding/waiting.

* _mutex_wait_scheme (Integer)
- In 11.2 this controls which wait scheme to use. It can be set to one

of the three wait schemes described above thus:
_mutex_wait_scheme = 0                        – Always YIELD
_mutex_wait_scheme = 1 & _mutex_wait_time = t – Always SLEEP for t milli-seconds (default)
_mutex_wait_scheme = 2 & _mutex_wait_time = t – EXP BACKOFF with maximum sleep

--//註:_mutex_wait_scheme = 2,我並沒有看到指數回退-每次迭代我們都會睡得更多的時間的情況.

7.附上測試的腳本:
$ cat mutexy.sql
column kglnaown format a20
column MUTEX_TYPE format a20
column kglnaobj format a100
column LOCATION format a30
  select * from (
  SELECT kglnahsh hash
        ,SUM (sleeps) sum_sleeps
        ,SUM (gets) sum_gets
        ,location
        ,mutex_type
        ,MUTEX_ADDR
        ,kglobt03 sqlid
        ,kglnaown
        ,replace(kglnaobj,chr(13)) c100
    --,SUBSTR (kglnaobj, 1, 140) object
    FROM x$kglob, x$mutex_sleep_history
   WHERE kglnahsh = mutex_identifier
GROUP BY kglnaobj
        ,kglobt03
        ,kglnaown
        ,kglnahsh
        ,location
        ,mutex_type
                ,MUTEX_ADDR
ORDER BY sum_sleeps DESC ) where rownum<= &1;
--//查詢x$mutex_sleep_history信息,主要v$mutex_sleep_history沒有MUTEX_ADDR欄位信息.

 $ cat fcha.sql
--------------------------------------------------------------------------------
--
-- File name:   fcha.sql (Find CHunk Address) v0.2
-- Purpose:     Find in which heap (UGA, PGA or Shared Pool) a memory address resides
--
-- Author:      Tanel Poder
-- Copyright:   (c) http://blog.tanelpoder.com | @tanelpoder
--
-- Usage:       @fcha <addr_hex>
--              @fcha F6A14448
--
-- Other:       This would only report an UGA/PGA chunk address if it belongs
--              to *your* process/session (x$ksmup and x$ksmpp do not see other
--              session/process memory)
--
--------------------------------------------------------------------------------

prompt Find in which heap (UGA, PGA or Shared Pool) the memory address &1 resides...
prompt
prompt WARNING!!! This script will query X$KSMSP, which will cause heavy shared pool latch contention
prompt in systems under load and with large shared pool. This may even completely hang
prompt your instance until the query has finished! You probably do not want to run this in production!
prompt
pause  Press ENTER to continue, CTRL+C to cancel...


select
    'SGA' LOC,
    KSMCHPTR,
    KSMCHIDX,
    KSMCHDUR,
    KSMCHCOM,
    KSMCHSIZ,
    KSMCHCLS,
    KSMCHTYP,
    KSMCHPAR
from
    x$ksmsp
where
    to_number(substr('&1', instr(lower('&1'), 'x')+1) ,'XXXXXXXXXXXXXXXX')
    between
        to_number(ksmchptr,'XXXXXXXXXXXXXXXX')
    and to_number(ksmchptr,'XXXXXXXXXXXXXXXX') + ksmchsiz - 1
union all
select
    'UGA',
    KSMCHPTR,
    null,
    null,
    KSMCHCOM,
    KSMCHSIZ,
    KSMCHCLS,
    KSMCHTYP,
    KSMCHPAR
from
    x$ksmup
where
    to_number(substr('&1', instr(lower('&1'), 'x')+1) ,'XXXXXXXXXXXXXXXX')
    between
        to_number(ksmchptr,'XXXXXXXXXXXXXXXX')
    and to_number(ksmchptr,'XXXXXXXXXXXXXXXX') + ksmchsiz - 1
union all
select
    'PGA',
    KSMCHPTR,
    null,
    null,
    KSMCHCOM,
    KSMCHSIZ,
    KSMCHCLS,
    KSMCHTYP,
    KSMCHPAR
from
    x$ksmpp
where
    to_number(substr('&1', instr(lower('&1'), 'x')+1) ,'XXXXXXXXXXXXXXXX')
    between
        to_number(ksmchptr,'XXXXXXXXXXXXXXXX')
    and to_number(ksmchptr,'XXXXXXXXXXXXXXXX') + ksmchsiz - 1
/

$ cat shp4.sql
column N0_6_16 format 99999999
SELECT DECODE (kglhdadr,
               kglhdpar, '父游標句柄地址',
               '子游標句柄地址')
          text,
       kglhdadr,
       kglhdpar,
       substr(kglnaobj,1,40) c40,
           KGLHDLMD,
           KGLHDPMD,
           kglhdivc,
       kglobhd0,
       kglobhd6,
       kglobhs0,kglobhs6,kglobt16,
       kglobhs0+kglobhs6+kglobt16 N0_6_16,
           kglobhs0+kglobhs1+kglobhs2+kglobhs3+kglobhs4+kglobhs5+kglobhs6+kglobt16 N20,
           kglnahsh,
           kglobt03 ,
           kglobt09
  FROM x$kglob
 WHERE kglobt03 = '&1'  or kglhdpar='&1' or kglhdadr='&1' or KGLNAHSH= &2;

$ cat spid.sql
column sid     new_value newsid
column serial#  new_value newserial
column spid    new_value newspid

set verify off
/* Formatted on 2019/3/28 17:19:16 (QP5 v5.252.13127.32867) */
SELECT s.sid
      ,s.serial#
      ,s.process
      ,s.server
      ,p.spid
      ,p.pid
      ,p.serial# p_serial#
      ,   'alter system kill session '''
       || s.sid
       || ','
       || s.serial#
       || ''''
       || ' immediate;'
          c50
  FROM v$session s, v$process p
 WHERE     s.sid IN (SELECT sid FROM v$mystat WHERE ROWNUM = 1)
       AND s.paddr = p.addr;

$ cat hide.sql
col name format a40
col description format a66
col session_value format a22
col default_value format a22
col system_value format a22

select
   a.ksppinm  name,
   a.ksppdesc DESCRIPTION,
   b.ksppstdf DEFAULT_VALUE,
   b.ksppstvl SESSION_VALUE,
   c.ksppstvl SYSTEM_VALUE
from x$ksppi a, x$ksppcv b, x$ksppsv c
where a.indx = b.indx
 and a.indx = c.indx
 and lower(a.ksppinm) like lower('%&1%')
order by 1;

$ cat pt.sql
--http://orasql.org/2013/04/02/sqlplus-tips-2/
-- show output
set termout on
-- but without echo
set echo off
-- without newpage on start:
set embedded on
-- scrolling control
set pause on
-- two lines between rows:
set newpage 2
-- text for prompt after each page:
set pause "Press Enter to view next row..."
-- new page on new "row_num"
break on row_num skip page

-- main query:
select *
from
   xmltable( 'for $a at $i in /ROWSET/ROW
                 ,$r in $a/*
                   return element ROW{
                                     element ROW_NUM{$i}
                                    ,element COL_NAME{$r/name()}
                                    ,element COL_VALUE{$r/text()}
                                    }'
          

您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • DCL: 管理用戶: 添加用戶: CREATE USER '用戶名'@'主機名' IDENTIFIED BY '密碼' 刪除用戶: DROP USER '用戶名'@'主機名' 修改用戶密碼: UPDATE USER SET PASSWORD = PASSWORD ('新密碼')WHERE USER ...
  • 架構驅動的因素 運營商和互聯網面臨不同的歷史時期,因而大數據在各自領域承擔的使命是不一樣的 運營商面臨被管道化的挑戰,營收下滑,大數據項目承擔企業戰略轉型、數據變現的使命。同時由於成本的壓力,以及大量基礎設施和設備利舊的訴求,所以運營商在大數據項目中,對性能、成本和集成度提出了很高的要求。 互聯網企 ...
  • 有些業務場景下會有擇出周末的需求,具體判斷語句如下: 1、SELECT TO_CHAR(TO_DATE(DATA_DATE,'YYYY-MM-DD),'D') FROM DUAL; 如果DATA_DATE為星期六則結果為7,如果DATA_DATE為星期日則結果為1,所以TO_CHAR(TO_DATE ...
  • 背景 今天早上11點的時候有客戶打電話過來說醫院的cis系統一直有阻塞,導致系統有卡慢的現象,信息中心的電話都快被打爆了,信息科人員很頭疼啊。 萬幸我們給資料庫裝了‘攝像頭’會把資料庫的一切狀態操作都會記錄下來,趕緊要了遠程之後看到了系統確實存在大量的阻塞(下圖) 通過點擊紫色圓點之後發現了長長的阻 ...
  • [20190329]探究sql語句相關mutexes補充2.txt--//昨天測試sql語句相關mutexes,看看如果出現多個子游標的情況.1.環境:SCOTT@book> @ ver1PORT_STRING VERSION BANNER x86_64/Linux 2.4.xx 11.2.0.4. ...
  • 筆記記錄自林曉斌(丁奇)老師的《MySQL實戰45講》 (本篇內圖片均來自丁奇老師的講解,如有侵權,請聯繫我刪除) 13) --為什麼數據表刪掉一半,表文件大小不變? 我們還是以MySQL中應用最廣泛的InnoDB引擎為基礎來展開討論。一個表中包含兩部分:表結構定義和數據。在MySQL8.0版本以前 ...
  • 前言:我跟網上大家的原因基本一樣,就是好久沒用sqlserver了,中間也對VS進行過卸載升級等,突然有一天發現,打開Sqlserver時打不開了,出了一個彈框:Cannot find one or more components... 百度吧,找到一個嘗試後可行的文章,該解決方案只需要卸載一個程式 ...
  • char char是定長的,也就是當你輸入的字元小於你指定的數目時,char(8),你輸入的字元小於8時,它會再後面補空值。當你輸入的字元大於指定的數時,它會截取超出的字元。 nvarchar(n) 包含 n 個字元的可變長度 Unicode 字元數據。n 的值必須介於 1 與 4,000 之間。字 ...
一周排行
    -Advertisement-
    Play Games
  • 示例項目結構 在 Visual Studio 中創建一個 WinForms 應用程式後,項目結構如下所示: MyWinFormsApp/ │ ├───Properties/ │ └───Settings.settings │ ├───bin/ │ ├───Debug/ │ └───Release/ ...
  • [STAThread] 特性用於需要與 COM 組件交互的應用程式,尤其是依賴單線程模型(如 Windows Forms 應用程式)的組件。在 STA 模式下,線程擁有自己的消息迴圈,這對於處理用戶界面和某些 COM 組件是必要的。 [STAThread] static void Main(stri ...
  • 在WinForm中使用全局異常捕獲處理 在WinForm應用程式中,全局異常捕獲是確保程式穩定性的關鍵。通過在Program類的Main方法中設置全局異常處理,可以有效地捕獲並處理未預見的異常,從而避免程式崩潰。 註冊全局異常事件 [STAThread] static void Main() { / ...
  • 前言 給大家推薦一款開源的 Winform 控制項庫,可以幫助我們開發更加美觀、漂亮的 WinForm 界面。 項目介紹 SunnyUI.NET 是一個基於 .NET Framework 4.0+、.NET 6、.NET 7 和 .NET 8 的 WinForm 開源控制項庫,同時也提供了工具類庫、擴展 ...
  • 說明 該文章是屬於OverallAuth2.0系列文章,每周更新一篇該系列文章(從0到1完成系統開發)。 該系統文章,我會儘量說的非常詳細,做到不管新手、老手都能看懂。 說明:OverallAuth2.0 是一個簡單、易懂、功能強大的許可權+可視化流程管理系統。 有興趣的朋友,請關註我吧(*^▽^*) ...
  • 一、下載安裝 1.下載git 必須先下載並安裝git,再TortoiseGit下載安裝 git安裝參考教程:https://blog.csdn.net/mukes/article/details/115693833 2.TortoiseGit下載與安裝 TortoiseGit,Git客戶端,32/6 ...
  • 前言 在項目開發過程中,理解數據結構和演算法如同掌握蓋房子的秘訣。演算法不僅能幫助我們編寫高效、優質的代碼,還能解決項目中遇到的各種難題。 給大家推薦一個支持C#的開源免費、新手友好的數據結構與演算法入門教程:Hello演算法。 項目介紹 《Hello Algo》是一本開源免費、新手友好的數據結構與演算法入門 ...
  • 1.生成單個Proto.bat內容 @rem Copyright 2016, Google Inc. @rem All rights reserved. @rem @rem Redistribution and use in source and binary forms, with or with ...
  • 一:背景 1. 講故事 前段時間有位朋友找到我,說他的窗體程式在客戶這邊出現了卡死,讓我幫忙看下怎麼回事?dump也生成了,既然有dump了那就上 windbg 分析吧。 二:WinDbg 分析 1. 為什麼會卡死 窗體程式的卡死,入口門檻很低,後續往下分析就不一定了,不管怎麼說先用 !clrsta ...
  • 前言 人工智慧時代,人臉識別技術已成為安全驗證、身份識別和用戶交互的關鍵工具。 給大家推薦一款.NET 開源提供了強大的人臉識別 API,工具不僅易於集成,還具備高效處理能力。 本文將介紹一款如何利用這些API,為我們的項目添加智能識別的亮點。 項目介紹 GitHub 上擁有 1.2k 星標的 C# ...