ELK重難點總結和整體優化配置

来源:https://www.cnblogs.com/along21/archive/2018/03/21/8613115.html
-Advertisement-
Play Games

本文收錄在Linux運維企業架構實戰系列 做了幾周的測試,踩了無數的坑,總結一下,全是乾貨,給大家分享~ 一、elk 實用知識點總結 1、編碼轉換問題(主要就是中文亂碼) (1)input 中的codec => plain 轉碼 將GB2312 的文本編碼,轉為UTF-8 的編碼 (2)也可以在fi ...


本文收錄在Linux運維企業架構實戰系列

做了幾周的測試,踩了無數的坑,總結一下,全是乾貨,給大家分享~

一、elk 實用知識點總結

1、編碼轉換問題(主要就是中文亂碼)

(1)input 中的codec => plain 轉碼

codec => plain {
         charset => "GB2312"
}

將GB2312 的文本編碼,轉為UTF-8 的編碼

 

(2)也可以在filebeat中實現編碼的轉換(推薦)

filebeat.prospectors:
- input_type: log
  paths:
    - c:\Users\Administrator\Desktop\performanceTrace.txt
  encoding: GB2312

 

2、刪除多餘日誌中的多餘行

(1)logstash filter 中drop 刪除

    if ([message] =~ "^20.*-\ task\ request,.*,start\ time.*") {   #用正則需刪除的多餘行
            drop {}
    } 

(2)日誌示例

2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59   #需刪除的行
-- Request String : {"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End
-- Response String : {"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End

 

3、grok 處理多種日誌不同的行

(1)日誌示例:

2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59
-- Request String : {"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End
-- Response String : {"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End

 

(2)在logstash filter中grok 分別處理3行

match => {
    "message" => "^20.*-\ task\ request,.*,start\ time\:%{TIMESTAMP_ISO8601:RequestTime}"
match => {
    "message" => "^--\ Request\ String\ :\ \{\"UserName\":\"%{NUMBER:UserName:int}\",\"Pwd\":\"(?<Pwd>.*)\",\"DeviceType\":%{NUMBER:DeviceType:int},\"DeviceId\":\"(?<DeviceId>.*)\",\"EquipmentNo\":(?<EquipmentNo>.*),\"SSID\":(?<SSID>.*),\"RegisterPhones\":(?<RegisterPhones>.*),\"AppKey\":\"(?<AppKey>.*)\",\"Version\":\"(?<Version>.*)\"\}\ --\ \End.*"    
}
match => {
    "message" => "^--\ Response\ String\ :\ \{\"ErrorCode\":%{NUMBER:ErrorCode:int},\"Success\":(?<Success>[a-z]*),\"ErrorMsg\":(?<ErrorMsg>.*),\"Result\":(?<Result>.*),\"WaitInterval\":%{NUMBER:WaitInterval:int}\}\ --\ \End.*"
}
... 等多行

 

4、日誌多行合併處理—multiline插件(重點)

(1)示例:

① 日誌

2018-03-20 10:44:01,523 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59
-- Request String : {"UserName":"15046699923","Pwd":"ZYjyh727","DeviceType":2,"DeviceId":"PC-20170525SADY","EquipmentNo":null,"SSID":"pc","RegisterPhones":null,"AppKey":"ab09d78e3b2c40b789ddfc81674bc24deac","Version":"2.0.5.3"} -- End
-- Response String : {"ErrorCode":0,"Success":true,"ErrorMsg":null,"Result":null,"WaitInterval":30} -- End

 

② logstash grok 對合併後多行的處理(合併多行後續都一樣,如下)

filter {
  grok {
    match => {
      "message" => "^%{TIMESTAMP_ISO8601:InsertTime}\ .*-\ task\ request,.*,start\ time:%{TIMESTAMP_ISO8601:RequestTime}\n--\ Request\ String\ :\ \{\"UserName\":\"%{NUMBER:UserName:int}\",\"Pwd\":\"(?<Pwd>.*)\",\"DeviceType\":%{NUMBER:DeviceType:int},\"DeviceId\":\"(?<DeviceId>.*)\",\"EquipmentNo\":(?<EquipmentNo>.*),\"SSID\":(?<SSID>.*),\"RegisterPhones\":(?<RegisterPhones>.*),\"AppKey\":\"(?<AppKey>.*)\",\"Version\":\"(?<Version>.*)\"\}\ --\ \End\n--\ Response\ String\ :\ \{\"ErrorCode\":%{NUMBER:ErrorCode:int},\"Success\":(?<Success>[a-z]*),\"ErrorMsg\":(?<ErrorMsg>.*),\"Result\":(?<Result>.*),\"WaitInterval\":%{NUMBER:WaitInterval:int}\}\ --\ \End"
    }
  }
}

 

(2)在filebeat中使用multiline 插件(推薦)

① 介紹multiline

pattern:正則匹配從哪行合併

negate:true/false,匹配到pattern 部分開始合併,還是不配到的合併

match:after/before(需自己理解)

  after:匹配到pattern 部分後合併,註意:這種情況最後一行日誌不會被匹配處理

  before:匹配到pattern 部分前合併(推薦)

 

② 5.5版本之後(before為例)

filebeat.prospectors:
- input_type: log
  paths:
    - /root/performanceTrace*
  fields:
    type: zidonghualog
  multiline.pattern: '.*\"WaitInterval\":.*--\ End'
  multiline.negate: true
  multiline.match: before

 

③ 5.5版本之前(after為例)

filebeat.prospectors:
- input_type: log 
     paths:
      - /root/performanceTrace*
      input_type: log 
      multiline:
           pattern: '^20.*'
           negate: true
           match: after

 

(3)在logstash input中使用multiline 插件(沒有filebeat 時推薦)

① 介紹multiline

pattern:正則匹配從哪行合併

negate:true/false,匹配到pattern 部分開始合併,還是不配到的合併

what:previous/next(需自己理解)

  previous:相當於filebeat 的after

  next:相當於filebeat 的before

 

② 用法

input {
        file {
                path => ["/root/logs/log2"]
                start_position => "beginning"
                codec => multiline {
                        pattern => "^20.*"
                        negate => true
                        what => "previous"
                }
        }
}

 

(4)在logstash filter中使用multiline 插件(不推薦)

(a)不推薦的原因:

  ① filter設置multiline後,pipline worker會自動將為1

  ② 5.5 版本官方把multiline 去除了,要使用的話需下載,下載命令如下:

  /usr/share/logstash/bin/logstash-plugin install logstash-filter-multiline

 

(b)示例:

filter {
  multiline {
    pattern => "^20.*"
    negate => true
    what => "previous"
  }
} 

5、logstash filter 中的date使用

(1) 日誌示例

2018-03-20 10:44:01 [33]DEBUG Debug - task request,task Id:1cbb72f1-a5ea-4e73-957c-6d20e9e12a7a,start time:2018-03-20 10:43:59

(2) date 使用

        date {
                match => ["InsertTime","YYYY-MM-dd HH:mm:ss "]
                remove_field => "InsertTime"
        }

註:

match => ["timestamp" ,"dd/MMM/YYYY H:m:s Z"]

  匹配這個欄位,欄位的格式為:日日/月月月/年年年年 時/分/秒 時區

也可以寫為:match => ["timestamp","ISO8601"](推薦)

 

(3)date 介紹

  就是將匹配日誌中時間的key 替換為@timestamp 的時間,因為@timestamp 的時間是日誌送到logstash 的時間,並不是日誌中真正的時間。

 

6、對多類日誌分類處理(重點)

① 在filebeat 的配置中添加type 分類

filebeat:
  prospectors:
    -
      paths:
        #- /mnt/data/WebApiDebugLog.txt*
        - /mnt/data_total/WebApiDebugLog.txt*
      fields:
        type: WebApiDebugLog_total
    -
      paths:
        - /mnt/data_request/WebApiDebugLog.txt*
        #- /mnt/data/WebApiDebugLog.txt*
      fields:
        type: WebApiDebugLog_request
    -
      paths:
        - /mnt/data_report/WebApiDebugLog.txt*
        #- /mnt/data/WebApiDebugLog.txt*
      fields:
        type: WebApiDebugLog_report

 

② 在logstash filter中使用if,可進行對不同類進行不同處理

filter {
   if [fields][type] == "WebApiDebugLog_request" {   #對request 類日誌
        if ([message] =~ "^20.*-\ task\ report,.*,start\ time.*") {   #刪除report 行
                drop {}
        }
    grok {
        match => {"... ..."}
        }
}

 

③ 在logstash output中使用if

if [fields][type] == "WebApiDebugLog_total" {
    elasticsearch {
        hosts => ["6.6.6.6:9200"]
        index => "logstashl-WebApiDebugLog_total-%{+YYYY.MM.dd}"
        document_type => "WebApiDebugLog_total_logs"
} 

二、對elk 整體性能的優化

1、性能分析

(1)伺服器硬體Linux:1cpu 4GRAM

假設每條日誌250 Byte

 

(2)分析

logstash-Linux:1cpu 4GRAM

每秒500條日誌

去掉ruby每秒660條日誌

去掉grok後每秒1000條數據

 

filebeat-Linux:1cpu 4GRAM

每秒2500-3500條數據

每天每台機器可處理:24h*60min*60sec*3000*250Byte=64,800,000,000Bytes,約64G

 

③ 瓶頸在logstash 從redis中取數據存入ES,開啟一個logstash,每秒約處理6000條數據;開啟兩個logstash,每秒約處理10000條數據(cpu已基本跑滿);

 

④ logstash的啟動過程占用大量系統資源,因為腳本中要檢查java、ruby以及其他環境變數,啟動後資源占用會恢復到正常狀態。 

 

2、關於收集日誌的選擇:logstash/filter

(1)沒有原則要求使用filebeat或logstash,兩者作為shipper的功能是一樣的,區別在於:

logstash由於集成了眾多插件,如grok,ruby,所以相比beat是重量級的;

② logstash啟動後占用資源更多,如果硬體資源足夠則無需考慮二者差異;

③ logstash基於JVM,支持跨平臺;而beat使用golang編寫,AIX不支持;

④ AIX 64bit平臺上需要安裝jdk(jre) 1.7 32bit,64bit的不支持;

⑤ filebeat可以直接輸入到ES,但是系統中存在logstash直接輸入到ES的情況,這將造成不同的索引類型造成檢索複雜,最好統一輸入到els 的源。

 

(2)總結

  logstash/filter 總之各有千秋,但是,我推薦選擇:在每個需要收集的日誌伺服器上配置filebeat,因為輕量級,用於收集日誌;再統一輸出給logstash,做對日誌的處理;最後統一由logstash 輸出給els。

 

3、logstash的優化相關配置

(1)可以優化的參數,可根據自己的硬體進行優化配置

① pipeline 線程數,官方建議是等於CPU內核數

預設配置 ---> pipeline.workers: 2

可優化為 ---> pipeline.workers: CPU內核數(或幾倍cpu內核數)

 

② 實際output 時的線程數

預設配置 ---> pipeline.output.workers: 1

可優化為 ---> pipeline.output.workers: 不超過pipeline 線程數

 

③ 每次發送的事件數

預設配置 ---> pipeline.batch.size: 125

可優化為 ---> pipeline.batch.size: 1000

 

④ 發送延時

預設配置 ---> pipeline.batch.delay: 5

可優化為 ---> pipeline.batch.size: 10

 

(2)總結

  通過設置-w參數指定pipeline worker數量,也可直接修改配置文件logstash.yml。這會提高filter和output的線程數,如果需要的話,將其設置為cpu核心數的幾倍是安全的,線程在I/O上是空閑的。

  預設每個輸出在一個pipeline worker線程上活動,可以在輸出output 中設置workers設置,不要將該值設置大於pipeline worker數。

  還可以設置輸出的batch_size數,例如ES輸出與batch size一致。

  filter設置multiline後,pipline worker會自動將為1,如果使用filebeat,建議在beat中就使用multiline,如果使用logstash作為shipper,建議在input 中設置multiline,不要在filter中設置multiline。

 

(3)Logstash中的JVM配置文件

  Logstash是一個基於Java開發的程式,需要運行在JVM中,可以通過配置jvm.options來針對JVM進行設定。比如記憶體的最大最小、垃圾清理機制等等。JVM的記憶體分配不能太大不能太小,太大會拖慢操作系統。太小導致無法啟動。預設如下:

-Xms256m #最小使用記憶體

-Xmx1g #最大使用記憶體

 

4、引入Redis 的相關問題

(1)filebeat可以直接輸入到logstash(indexer),但logstash沒有存儲功能,如果需要重啟需要先停所有連入的beat,再停logstash,造成運維麻煩;另外如果logstash發生異常則會丟失數據;引入Redis作為數據緩衝池,當logstash異常停止後可以從Redis的客戶端看到數據緩存在Redis中;

(2)Redis可以使用list(最長支持4,294,967,295條)或發佈訂閱存儲模式;

(3)redis 做elk 緩衝隊列的優化:

① bind 0.0.0.0 #不要監聽本地埠

② requirepass ilinux.io #加密碼,為了安全運行

③ 只做隊列,沒必要持久存儲,把所有持久化功能關掉:快照(RDB文件)和追加式文件(AOF文件),性能更好

  save "" 禁用快照

  appendonly no 關閉RDB

④ 把記憶體的淘汰策略關掉,把記憶體空間最大

  maxmemory 0 #maxmemory為0的時候表示我們對Redis的記憶體使用沒有限制

 

5、elasticsearch 節點優化配置

(1)伺服器硬體配置,OS 參數

(a) /etc/sysctl.conf 配置

vim /etc/sysctl.conf

① vm.swappiness = 1                     #ES 推薦將此參數設置為 1,大幅降低 swap 分區的大小,強制最大程度的使用記憶體,註意,這裡不要設置為 0, 這會很可能會造成 OOM
② net.core.somaxconn = 65535     #定義了每個埠最大的監聽隊列的長度
③ vm.max_map_count= 262144    #限制一個進程可以擁有的VMA(虛擬記憶體區域)的數量。虛擬記憶體區域是一個連續的虛擬地址空間區域。當VMA 的數量超過這個值,OOM
④ fs.file-max = 518144                   #設置 Linux 內核分配的文件句柄的最大數量

[root@elasticsearch]# sysctl -p 生效一下

 

(b)limits.conf 配置

vim /etc/security/limits.conf

elasticsearch    soft    nofile          65535
elasticsearch    hard    nofile          65535
elasticsearch    soft    memlock         unlimited
elasticsearch    hard    memlock         unlimited

 

(c)為了使以上參數永久生效,還要設置兩個地方

vim /etc/pam.d/common-session-noninteractive

vim /etc/pam.d/common-session

添加如下屬性:

session required pam_limits.so

可能需重啟後生效

 

(2)elasticsearch 中的JVM配置文件

-Xms2g

-Xmx2g

① 將最小堆大小(Xms)和最大堆大小(Xmx)設置為彼此相等。

② Elasticsearch可用的堆越多,可用於緩存的記憶體就越多。但請註意,太多的堆可能會使您長時間垃圾收集暫停。

③ 設置Xmx為不超過物理RAM的50%,以確保有足夠的物理記憶體留給內核文件系統緩存。

④ 不要設置Xmx為JVM用於壓縮對象指針的臨界值以上;確切的截止值有所不同,但接近32 GB。不要超過32G,如果空間大,多跑幾個實例,不要讓一個實例太大記憶體

 

(3)elasticsearch 配置文件優化參數

① vim elasticsearch.yml

bootstrap.memory_lock: true  #鎖住記憶體,不使用swap
#緩存、線程等優化如下
bootstrap.mlockall: true
transport.tcp.compress: true
indices.fielddata.cache.size: 40%
indices.cache.filter.size: 30%
indices.cache.filter.terms.size: 1024mb
threadpool:
    search:
        type: cached
        size: 100
        queue_size: 2000

 

② 設置環境變數

vim /etc/profile.d/elasticsearch.sh export ES_HEAP_SIZE=2g    #Heap Size不超過物理記憶體的一半,且小於32G

 

(4)集群的優化(我未使用集群)

① ES是分散式存儲,當設置同樣的cluster.name後會自動發現並加入集群;

② 集群會自動選舉一個master,當master宕機後重新選舉;

③ 為防止"腦裂",集群中個數最好為奇數個

④ 為有效管理節點,可關閉廣播 discovery.zen.ping.multicast.enabled: false,並設置單播節點組discovery.zen.ping.unicast.hosts: ["ip1", "ip2", "ip3"]

 

6、性能的檢查

(1)檢查輸入和輸出的性能

Logstash和其連接的服務運行速度一致,它可以和輸入、輸出的速度一樣快。

 

(2)檢查系統參數

① CPU

註意CPU是否過載。在Linux/Unix系統中可以使用top -H查看進程參數以及總計。

如果CPU使用過高,直接跳到檢查JVM堆的章節並檢查Logstash worker設置。

 

② Memory

註意Logstash是運行在Java虛擬機中的,所以它只會用到你分配給它的最大記憶體。

檢查其他應用使用大量記憶體的情況,這將造成Logstash使用硬碟swap,這種情況會在應用占用記憶體超出物理記憶體範圍時。

 

③ I/O 監控磁碟I/O檢查磁碟飽和度

使用Logstash plugin(例如使用文件輸出)磁碟會發生飽和。

當發生大量錯誤,Logstash生成大量錯誤日誌時磁碟也會發生飽和。

在Linux中,可使用iostat,dstat或者其他命令監控磁碟I/O

 

④ 監控網路I/O

當使用大量網路操作的input、output時,會導致網路飽和。

在Linux中可使用dstat或iftop監控網路情況。

 

(3)檢查JVM heap

  heap設置太小會導致CPU使用率過高,這是因為JVM的垃圾回收機制導致的。

  一個快速檢查該設置的方法是將heap設置為兩倍大小然後檢測性能改進。不要將heap設置超過物理記憶體大小,保留至少1G記憶體給操作系統和其他進程。

  你可以使用類似jmap命令行或VisualVM更加精確的計算JVM heap

 


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 常用的快捷鍵: ~~~~ Ctrl + u 刪除游標之前到行首的字元 Ctrl + k 刪除游標之後到行尾的字元 Ctrl + a 游標移動到行首 Ctrl + e 游標移動到行尾 Ctrl + l 清屏 Alt + f 游標向後移動一個單詞 Alt + b 游標向前移動一個單詞 ~~~~ ...
  • wifi遠程連接樹莓派3B,ssh連接,配置putty,vnc,獲得遠程桌面 ...
  • Windows下查看修改環境變數PATH 右擊"此電腦",點擊"屬性",左側選擇"高級系統設置",如下圖 選擇“高級”,再點擊“環境變數”,就會如下圖所示 上部分是當前用戶的環境變數,下部分是系統的環境變數,適用所有用戶,一般而言,修改PATH都是更改系統變數。 點擊“新建”,設置變數名和變數值後即 ...
  • 基於: Mini2440 開發板, Linux 3.4.2 內核 ASOC 簡介: ~~~~ ASoC ALSA System on Chip,是建立在標準ALSA驅動層上,為了更好地支持嵌入式處理器和移動設備中音頻 Codec 的一套軟體體系。 就像軟體領域里的抽象和重用一樣,嵌入式設備的音頻系統 ...
  • 本文所述的方法在RHEL6.5、RHEL7和CentOS6.5中同樣適用。 1.工具:VirtualBox,虛擬機:CentOS7 2.VirtualBox工具中的網路配置 (1)VirtualBox全局設置:管理——>全局設定——>網路——>僅主機(host-only) 註:因為我本次配置是要搭建 ...
  • 原文鏈接:http://blog.csdn.net/qq_38646470/article/details/79643000 編程人員很喜歡的編輯器:vim 先搞清楚vim的三種模式: 1.命令模式:在Linux終端中輸入“vim 文件名”就進入了命令模式,但不能輸入文字。 2.編輯模式:在命令模式 ...
  • 1、複製/etc/skel目錄為/home/tuser1,要求/home/tuser1及其內部文件的屬組和其它用戶均沒有任何訪問許可權。 2、編輯/etc/group文件,添加組hadoop。 3、手動編輯/etc/passwd文件新增一行,添加用戶hadoop,其基本組ID為hadoop組的id號; ...
  • 貼上內容來源https://www.cnblogs.com/Alier/p/6358447.html 1 備份原來的更新源 2 修改更新源 打開sources.list (這就是存放更新源的文件) 將下麵所有內容複製,粘貼並覆蓋sources.list文件中的所有內容 3 讓更新源生效 ...
一周排行
    -Advertisement-
    Play Games
  • 移動開發(一):使用.NET MAUI開發第一個安卓APP 對於工作多年的C#程式員來說,近來想嘗試開發一款安卓APP,考慮了很久最終選擇使用.NET MAUI這個微軟官方的框架來嘗試體驗開發安卓APP,畢竟是使用Visual Studio開發工具,使用起來也比較的順手,結合微軟官方的教程進行了安卓 ...
  • 前言 QuestPDF 是一個開源 .NET 庫,用於生成 PDF 文檔。使用了C# Fluent API方式可簡化開發、減少錯誤並提高工作效率。利用它可以輕鬆生成 PDF 報告、發票、導出文件等。 項目介紹 QuestPDF 是一個革命性的開源 .NET 庫,它徹底改變了我們生成 PDF 文檔的方 ...
  • 項目地址 項目後端地址: https://github.com/ZyPLJ/ZYTteeHole 項目前端頁面地址: ZyPLJ/TreeHoleVue (github.com) https://github.com/ZyPLJ/TreeHoleVue 目前項目測試訪問地址: http://tree ...
  • 話不多說,直接開乾 一.下載 1.官方鏈接下載: https://www.microsoft.com/zh-cn/sql-server/sql-server-downloads 2.在下載目錄中找到下麵這個小的安裝包 SQL2022-SSEI-Dev.exe,運行開始下載SQL server; 二. ...
  • 前言 隨著物聯網(IoT)技術的迅猛發展,MQTT(消息隊列遙測傳輸)協議憑藉其輕量級和高效性,已成為眾多物聯網應用的首選通信標準。 MQTTnet 作為一個高性能的 .NET 開源庫,為 .NET 平臺上的 MQTT 客戶端與伺服器開發提供了強大的支持。 本文將全面介紹 MQTTnet 的核心功能 ...
  • Serilog支持多種接收器用於日誌存儲,增強器用於添加屬性,LogContext管理動態屬性,支持多種輸出格式包括純文本、JSON及ExpressionTemplate。還提供了自定義格式化選項,適用於不同需求。 ...
  • 目錄簡介獲取 HTML 文檔解析 HTML 文檔測試參考文章 簡介 動態內容網站使用 JavaScript 腳本動態檢索和渲染數據,爬取信息時需要模擬瀏覽器行為,否則獲取到的源碼基本是空的。 本文使用的爬取步驟如下: 使用 Selenium 獲取渲染後的 HTML 文檔 使用 HtmlAgility ...
  • 1.前言 什麼是熱更新 游戲或者軟體更新時,無需重新下載客戶端進行安裝,而是在應用程式啟動的情況下,在內部進行資源或者代碼更新 Unity目前常用熱更新解決方案 HybridCLR,Xlua,ILRuntime等 Unity目前常用資源管理解決方案 AssetBundles,Addressable, ...
  • 本文章主要是在C# ASP.NET Core Web API框架實現向手機發送驗證碼簡訊功能。這裡我選擇是一個互億無線簡訊驗證碼平臺,其實像阿裡雲,騰訊雲上面也可以。 首先我們先去 互億無線 https://www.ihuyi.com/api/sms.html 去註冊一個賬號 註冊完成賬號後,它會送 ...
  • 通過以下方式可以高效,並保證數據同步的可靠性 1.API設計 使用RESTful設計,確保API端點明確,並使用適當的HTTP方法(如POST用於創建,PUT用於更新)。 設計清晰的請求和響應模型,以確保客戶端能夠理解預期格式。 2.數據驗證 在伺服器端進行嚴格的數據驗證,確保接收到的數據符合預期格 ...