統計分析中Type I Error與Type II Error的區別 ============== 在統計分析中,經常提到Type I Error和Type II Error。他們的基本概念是什麼?有什麼區別? 下麵的表格顯示 between truth/falseness of the null ...
統計分析中Type I Error與Type II Error的區別
在統計分析中,經常提到Type I Error和Type II Error。他們的基本概念是什麼?有什麼區別?
下麵的表格顯示 between truth/falseness of the null hypothesis and outcomes of the test
"
-------|-------|-------
| Judgement of Null Hypothesis H0 | Valid | Invalid |
| Reject |Type I Error (False Positive)|Correct (True Positive)|
| Fail to Reject | Correct (True Negative)|Type II Error (False Negative)|
-------|-------|-------
"
Type I error:
false positive,
Testing shows that something is present, but it is not. incorrect detection of something.
Type II error:
false negative,
Testing shows that something is not present, but in fact it is present. Fail to detect something.
In statistical hypothesis testing, a type I error is the incorrect rejection of a true null hypothesis (a "false positive"), while a type II error is the failure to reject a false null hypothesis (a "false negative").