題意 "題目鏈接" Sol 設$f[i][j]$表示枚舉到位置串的第i位,當前與未知串的第j位匹配,那麼我們只要保證在轉移的時候永遠不會匹配即可 預處理出已知串的每個位置加上某個字元後能轉移到的位置,矩陣快速冪優化一下 複雜度$O(M^3 \log n)$ cpp include using nam ...
題意
Sol
設\(f[i][j]\)表示枚舉到位置串的第i位,當前與未知串的第j位匹配,那麼我們只要保證在轉移的時候永遠不會匹配即可
預處理出已知串的每個位置加上某個字元後能轉移到的位置,矩陣快速冪優化一下
複雜度\(O(M^3 \log n)\)
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 22;
int N, M, mod, s[MAXN], trans[MAXN][10], p[MAXN], g[MAXN], base[MAXN];
char ss[MAXN];
template<typename A, typename B> inline void add2(A &x, B y) {
if(x + y < 0) x = x + y + mod;
else x = x + y >= mod ? x + y - mod : x + y;
}
int Lim;
struct Ma {
int m[MAXN][MAXN];
Ma() {
memset(m, 0, sizeof(m));
}
void init() {
for(int i = 0; i <= Lim; i++) m[i][i] = 1;
}
Ma operator * (const Ma &rhs) const {
Ma ans;
for(int i = 0; i <= Lim; i++)
for(int j = 0; j <= Lim; j++) {
__int128 tmp = 0;
for(int k = 0; k <= Lim; k++) tmp += 1ll * m[i][k] * rhs.m[k][j] % mod;
ans.m[i][j] = tmp % mod;
}
return ans;
}
}f;
void GetNxt() {
int j = 0;
for(int i = 0; i <= M; i++) {
if(i > 1) {
while(j && s[i] != s[j + 1]) j = p[j];
if(s[i] == s[j + 1]) j++;
p[i] = j;
}
for(int t = 0; t <= 9; t++) {
int k = i;
while(k && t != s[k + 1]) k = p[k];
if(t == s[k + 1]) k++;
trans[i][t] = k;
}
}
}
Ma MPow(Ma a, int p) {
Ma base; base.init();
while(p) {
if(p & 1) base = base * a;
a = a * a; p >>= 1;
}
return base;
}
int main() {
cin >> N >> M >> mod; Lim = M + 1;
scanf("%s", ss + 1);
for(int i = 1; i <= M; i++) s[i] = ss[i] - '0';
for(int i = 0; i <= 9; i++) g[i == s[1]]++;
GetNxt();
for(int j = 0; j <= M; j++)
for(int k = 0; k <= 9; k++)
if(trans[j][k] != M)
f.m[trans[j][k]][j]++;
Ma tmp = MPow(f, N - 1);
for(int i = 0; i <= Lim; i++)
for(int j = 0; j <= Lim; j++)
add2(base[i], 1ll * tmp.m[i][j] * g[j] % mod);
int ans = 0;
for(int i = 0; i <= M - 1; i++) add2(ans, base[i]);
cout << ans;
return 0;
}
/*
4 3 100
121
*/