"Linux內核同步機制之completion" 內核編程中常見的一種模式是,在當前線程之外初始化某個活動,然後等待該活動的結束。這個活動可能是,創建一個新的內核線程或者新的用戶空間進程、對一個已有進程的某個請求,或者某種類型的硬體動作,等等。在這種情況下,我們可以使用信號量來同步這兩個任務。然而, ...
Linux內核同步機制之completion
內核編程中常見的一種模式是,在當前線程之外初始化某個活動,然後等待該活動的結束。這個活動可能是,創建一個新的內核線程或者新的用戶空間進程、對一個已有進程的某個請求,或者某種類型的硬體動作,等等。在這種情況下,我們可以使用信號量來同步這兩個任務。然而,內核中提供了另外一種機制——completion介面。Completion是一種輕量級的機制,他允許一個線程告訴另一個線程某個工作已經完成。
結構與初始化
Completion在內核中的實現基於等待隊列(關於等待隊列理論知識在前面的文章中有介紹),completion結構很簡單:
struct completion {
unsigned int done;/*用於同步的原子量*/
wait_queue_head_t wait;/*等待事件隊列*/
};
和信號量一樣,初始化分為靜態初始化和動態初始化兩種情況:
靜態初始化:
#define COMPLETION_INITIALIZER(work) \
{ 0, __WAIT_QUEUE_HEAD_INITIALIZER((work).wait) }
#define DECLARE_COMPLETION(work) \
struct completion work = COMPLETION_INITIALIZER(work)
動態初始化:
static inline void init_completion(struct completion *x)
{
x->done = 0;
init_waitqueue_head(&x->wait);
}
可見,兩種初始化都將用於同步的done原子量置位了0,後面我們會看到,該變數在wait相關函數中減一,在complete系列函數中加一。
實現
同步函數一般都成對出現,completion也不例外,我們看看最基本的兩個complete和wait_for_completion函數的實現。
wait_for_completion最終由下麵函數實現:
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
{
if (!x->done) {
DECLARE_WAITQUEUE(wait, current);
wait.flags |= WQ_FLAG_EXCLUSIVE;
__add_wait_queue_tail(&x->wait, &wait);
do {
if (signal_pending_state(state, current)) {
timeout = -ERESTARTSYS;
break;
}
__set_current_state(state);
spin_unlock_irq(&x->wait.lock);
timeout = schedule_timeout(timeout);
spin_lock_irq(&x->wait.lock);
} while (!x->done && timeout);
__remove_wait_queue(&x->wait, &wait);
if (!x->done)
return timeout;
}
x->done--;
return timeout ?: 1;
}
wait_for_completion最終由下麵函數實現:
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
{
if (!x->done) {
DECLARE_WAITQUEUE(wait, current);
wait.flags |= WQ_FLAG_EXCLUSIVE;
__add_wait_queue_tail(&x->wait, &wait);
do {
if (signal_pending_state(state, current)) {
timeout = -ERESTARTSYS;
break;
}
__set_current_state(state);
spin_unlock_irq(&x->wait.lock);
timeout = schedule_timeout(timeout);
spin_lock_irq(&x->wait.lock);
} while (!x->done && timeout);
__remove_wait_queue(&x->wait, &wait);
if (!x->done)
return timeout;
}
x->done--;
return timeout ?: 1;
}
而complete實現如下:
void complete(struct completion *x)
{
unsigned long flags;
spin_lock_irqsave(&x->wait.lock, flags);
x->done++;
__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
spin_unlock_irqrestore(&x->wait.lock, flags);
}
不看內核實現的源代碼我們也能想到他的實現,不外乎在wait函數中迴圈等待done變為可用(正),而另一邊的complete函數為喚醒函數,當然是將done加一,喚醒待處理的函數。是的,從上面的代碼看到,和我們想的一樣。內核也是這樣做的。
運用
運用LDD3中的例子:
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/completion.h>
MODULE_LICENSE("GPL");
static int complete_major=250;
DECLARE_COMPLETION(comp);
ssize_t complete_read(struct file *filp,char __user *buf,size_t count,loff_t *pos)
{
printk(KERN_ERR "process %i (%s) going to sleep\n",current->pid,current->comm);
wait_for_completion(&comp);
printk(KERN_ERR "awoken %i (%s)\n",current->pid,current->comm);
return 0;
}
ssize_t complete_write(struct file *filp,const char __user *buf,size_t count,loff_t *pos)
{
printk(KERN_ERR "process %i (%s) awakening the readers...\n",current->pid,current->comm);
complete(&comp);
return count;
}
struct file_operations complete_fops={
.owner=THIS_MODULE,
.read=complete_read,
.write=complete_write,
};
int complete_init(void)
{
int result;
result=register_chrdev(complete_major,"complete",&complete_fops);
if(result<0)
return result;
if(complete_major==0)
complete_major=result;
return 0;
}
void complete_cleanup(void)
{
unregister_chrdev(complete_major,"complete");
}
module_init(complete_init);
module_exit(complete_cleanup);
測試步驟:
- mknod /dev/complete創建complete節點,在linux上驅動程式需要手動創建文件節點。
- insmod complete.ko 插入驅動模塊,這裡要註意的是,因為我們的代碼中是手動分配的設備號,很可能被系統已經使用了,所以如果出現這種情況,查看/proc/devices文件。找一個沒有被使用的設備號。
- cat /dev/complete 用於讀該設備,調用設備的讀函數
- 打開另一個終端輸入 echo “hello” > /dev/complete 該命令用於寫入該設備。