一:sqlserver 執行計劃介紹 sqlserver 執行計是在sqlser manager studio 工具中打開,是檢查一條sql執行效率的工具。建議配合SET STATISTICS IO ON等語句來一起使用,執行計劃是從右向左看,耗時高的一般顯示在右邊,我們知道,sqlserver 查 ...
一:sqlserver 執行計劃介紹
sqlserver 執行計是在sqlser manager studio 工具中打開,是檢查一條sql執行效率的工具。建議配合SET STATISTICS IO ON等語句來一起使用,執行計劃是從右向左看,耗時高的一般顯示在右邊,我們知道,sqlserver 查詢資料庫的方式為:
1:表掃描(table scan) 查詢速度最慢.
2:聚集索引掃描(Clustered Index Scan),按聚集索引逐行進行查詢,效率比表掃描高,但速度還是慢.
3:索引掃描(index scan)效率比聚集索引快,根據索引濾出部分數據在進行逐行檢查。
4;索引檢查(index seek) 效率比索引掃描還要快,根據索引定位記錄所在位置再取出記錄.
5:聚集索引掃描(Clustered Index Seek) 效率最快,直接根據聚集索引獲取記錄。
當發現某個查詢比較慢時,可以首先檢查哪些操作的成本比較高,再看看那些操作在查找記錄時, 是不是【Table Scan】或者【Clustered Index Scan】,如果確實和這二種操作類型有關,則要考慮增加索引來解決了,sqlser 索引有兩種,聚集索引和非聚集索引,聚集索引是一張表只能有一個,比如id,非聚集索引可以有多個,聚集索引是順序排列的類似於字典查找拼音a、b、c……和字典文字內容順序是相同的,非聚集索引與內容是非順序排列的,類似字典偏旁查找時,同一個偏旁‘王’的漢字可能一個在第1頁一個在第5頁。
二:創建測試表
create table shopping_user(uId bigint primary key,uName varchar(10)); create table shopping_goods_category(cId bigint primary key,cName varchar(20)); create table shopping_goods(gId bigint primary key,gName varchar(50),gcId bigint,gPrice int); create table shopping_order(oId bigint primary key,oUserId bigint,oAddTime datetime,oGoodsId bigint,oMoney int);
創建測試sql
declare @index int; set @index = 1; while(@index<=10) begin insert into shopping_user (uId,uName) values(@index,'user'+cast(@index as varchar(10))); set @index = @index+1; end; insert into shopping_goods_category (cid,cName) values(1,'水果'); insert into shopping_goods_category (cid,cName) values( 2,'電腦'); insert into shopping_goods_category (cid,cName) values (3,'手機'); insert into shopping_goods_category (cid,cName) values (4,'服裝'); insert into shopping_goods_category (cid,cName) values (5,'食品'); ------ 商品表sql declare @index int; declare @num int; set @index = 1; set @num = 10000; begin while(@index<=100*@num) begin if @index<=10*@num begin insert into shopping_goods (gId,gcId,gName,gPrice) values (@index,1,'水果'+cast (@index as varchar(10)),cast( floor(rand()*100) as int) ); end; else if @index >10*@num and @index <=20*@num begin insert into shopping_goods (gId,gcId,gName,gPrice) values (@index,1,'水果'+cast (@index as varchar(10)),cast( floor(rand()*100) as int) ); end; else if @index >20*@num and @index <=30*@num begin insert into shopping_goods (gId,gcId,gName,gPrice) values (@index,2,'電腦'+cast (@index as varchar(10)),cast( floor(rand()*100) as int) ); end; else if @index >30*@num and @index <=40*@num begin insert into shopping_goods (gId,gcId,gName,gPrice) values (@index,2,'電腦'+cast (@index as varchar(10)),cast( floor(rand()*100) as int) ); end; else if @index >40*@num and @index <=50*@num begin insert into shopping_goods (gId,gcId,gName,gPrice) values (@index,3,'手機'+cast (@index as varchar(10)),cast( floor(rand()*100) as int) ); end; else if @index >50*@num and @index <=60*@num begin insert into shopping_goods (gId,gcId,gName,gPrice) values (@index,3,'手機'+cast (@index as varchar(10)),cast( floor(rand()*100) as int) ); end; else if @index >60*@num and @index <=70*@num begin insert into shopping_goods (gId,gcId,gName,gPrice) values (@index,4,'服裝'+cast (@index as varchar(10)),cast( floor(rand()*100) as int) ); end; else if @index >70*@num and @index <=80*@num begin insert into shopping_goods (gId,gcId,gName,gPrice) values (@index,4,'服裝'+cast (@index as varchar(10)),cast( floor(rand()*100) as int) ); end; else if @index >80*@num and @index <=90*@num begin insert into shopping_goods (gId,gcId,gName,gPrice) values (@index,5,'食品'+cast (@index as varchar(10)),cast( floor(rand()*100) as int) ); end; else if @index >90*@num and @index <=100*@num begin insert into shopping_goods (gId,gcId,gName,gPrice) values (@index,5,'食品'+cast (@index as varchar(10)),cast( floor(rand()*100) as int) ); end; set @index = @index+1; end; end; ------- 訂單表sql declare @index int; declare @num int; declare @timeNum int; declare @userId int; declare @goodsId int; declare @money int; declare @addTime varchar(30); set @index = 1; set @num = 10000; set @timeNum = 0; set @userId = 1; set @goodsid = 1; set @money = 100; set @addTime = ''; begin while(@index<=100*@num) begin set @timeNum = cast( floor(rand()*30)+1 as int) set @userId = cast( floor(rand()*99)+1 as int) set @money = cast ( floor(rand()*5000)+@userId as int) set @addTime = dateadd(day,@timeNum,getdate()) set @goodsId = cast( floor(rand()*999999)+1 as int) if @index<=10*@num begin insert into shopping_order (oid,oUserId,oAddTime,oGoodsId,oMoney) values (@index,@userId,@addTime,@goodsId,@money ); end; else if @index >10*@num and @index <=20*@num begin insert into shopping_order (oid,oUserId,oAddTime,oGoodsId,oMoney) values (@index,@userId,@addTime,@goodsId,@money ); end; else if @index >20*@num and @index <=30*@num begin insert into shopping_order (oid,oUserId,oAddTime,oGoodsId,oMoney) values (@index,@userId,@addTime,@goodsId,@money ); end; else if @index >30*@num and @index <=40*@num begin insert into shopping_order (oid,oUserId,oAddTime,oGoodsId,oMoney) values (@index,@userId,@addTime,@goodsId,@money ); end; else if @index >40*@num and @index <=50*@num begin insert into shopping_order (oid,oUserId,oAddTime,oGoodsId,oMoney) values (@index,@userId,@addTime,@goodsId,@money ); end; else if @index >50*@num and @index <=60*@num begin insert into shopping_order (oid,oUserId,oAddTime,oGoodsId,oMoney) values (@index,@userId,@addTime,@goodsId,@money ); end; else if @index >60*@num and @index <=70*@num begin insert into shopping_order (oid,oUserId,oAddTime,oGoodsId,oMoney) values (@index,@userId,@addTime,@goodsId,@money ); end; else if @index >70*@num and @index <=80*@num begin insert into shopping_order (oid,oUserId,oAddTime,oGoodsId,oMoney) values (@index,@userId,@addTime,@goodsId,@money ); end; else if @index >80*@num and @index <=90*@num begin insert into shopping_order (oid,oUserId,oAddTime,oGoodsId,oMoney) values (@index,@userId,@addTime,@goodsId,@money ); end; else if @index >90*@num and @index <=100*@num begin insert into shopping_order (oid,oUserId,oAddTime,oGoodsId,oMoney) values (@index,@userId,@addTime,@goodsId,@money ); end; set @index = @index+1; end; end;
創建索引
create index gcid_index on shopping_goods (gcid); create index userid_index on shopping_order(ouserid); create index goodsid_index on shopping_order(ogoodsid);
三:執行計劃分析
這裡使用上一篇文章sql語句百萬數據量優化方案中提到的,in和exists來分析,sql語句如下:
SET STATISTICS IO ON select top 20 * from shopping_order where exists ( select top 10 gid from shopping_goods where gcid =2 and ogoodsid = gid order by gprice desc) select top 20 * from shopping_order where goodsid in ( select top 10 gid from shopping_goods where gcid =2 order by gprice desc) -- DBCC DROPCLEANBUFFERS
從上圖中發現,使用exists,開銷最大的是,使用聚集索引查找,而使用in,第一次操作(從右各左看),就使用了聚集索引掃描,in的效果明顯差。我們再來看聚集索引查找結果,聚集索引返回的行數是20,見下圖.
然後我們來看使用in查詢,聚集索引掃描,查詢結果卻是20w
接著我們來看使用in查詢,第二個開銷大的排序,從剛纔查詢出來的20w數據中,order by desc 返回前20條數據。
此處我們還可以使用SET STATISTICS IO ON來查詢這兩者的io開銷:
掃描計數:執行的掃描次數;
邏輯讀取:從數據緩存讀取的頁數;
物理讀取:從磁碟讀取的頁數;
預讀:為進行查詢而放入緩存的頁數
重要:如果對於一個SQL查詢有多種寫法,那麼這四個值中的邏輯讀(logical reads)決定了哪個是最優化的。
從上圖中發現,exists查詢:shopping_order表掃描次數是2,邏輯讀取是80,shopping_goods表,掃描次數是1,邏輯讀取是6次,
而in shopping_order表掃描次數是2,邏輯讀取是55,shopping_goods表,掃描次數是5,邏輯讀取是5247次,當然工作中的sql肯定要複雜得多,但我們可以藉助這個工具來找到需要優化的sql,當然這也只是執行計劃,可能實際執行的效率和這個計劃有出入,但我們還是可以借鑒執行計劃來找到其中的不足。