A Magic Lamp Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4694 Accepted Submission(s): 1947 Pr ...
A Magic Lamp
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4694 Accepted Submission(s): 1947
The question is: give you an integer, you are allowed to delete exactly m digits. The left digits will form a new integer. You should make it minimum.
You are not allowed to change the order of the digits. Now can you help Kiki to realize her dream?
Input There are several test cases.
Each test case will contain an integer you are given (which may at most contains 1000 digits.) and the integer m (if the integer contains n digits, m will not bigger then n). The given integer will not contain leading zero.
Output For each case, output the minimum result you can get in one line.
If the result contains leading zero, ignore it.
Sample Input 178543 4 1000001 1 100001 2 12345 2 54321 2
Sample Output 13 1 0 123 321
Source HDU 2009-11 Programming Contest
- 長度為n的數串去掉m個數問剩下的數的最小值是多少
- 等價於求長度為n的數挑(n-m)個數使得其值最小
- 那麼我們只要從高位開始每次挑選最小數一共挑(n-m)個就是結果
- 用ST表計算區間min
- 註意前導零的處理
1 #include <iostream> 2 #include <string> 3 #include <cstdio> 4 #include <cstring> 5 #include <algorithm> 6 #include <climits> 7 #include <cmath> 8 #include <vector> 9 #include <queue> 10 #include <stack> 11 #include <set> 12 #include <map> 13 using namespace std; 14 typedef long long LL ; 15 typedef unsigned long long ULL ; 16 const int maxn = 1e3 + 10 ; 17 const int inf = 0x3f3f3f3f ; 18 const int npos = -1 ; 19 const int mod = 1e9 + 7 ; 20 const int mxx = 100 + 5 ; 21 const double eps = 1e-6 ; 22 const double PI = acos(-1.0) ; 23 24 int n, m, fac[10], dp[maxn][10], l, r, p, ans[maxn], tot, rec; 25 char str[maxn]; 26 int main(){ 27 // freopen("in.txt","r",stdin); 28 // freopen("out.txt","w",stdout); 29 for(int i=0;i<10;i++) 30 fac[i]=(1<<i); 31 while(~scanf("%s %d",str+1,&m)){ 32 n=strlen(str+1); 33 m=n-m; 34 rec=m; 35 int k=(int)(log((double)n)/log(2.0)); 36 for(int i=1;i<=n;i++) 37 dp[i][0]=i; 38 for(int j=1;j<=k;j++) 39 for(int i=1;i+fac[j]-1<=n;i++){ 40 int pl=dp[i][j-1], pr=dp[i+fac[j-1]][j-1]; 41 if(str[pl]<=str[pr]) 42 dp[i][j]=pl; 43 else 44 dp[i][j]=pr; 45 } 46 l=1; 47 tot=0; 48 while(m){ 49 r=n-m+1; 50 k=(int)(log((double)(r-l+1))/log(2.0)); 51 int pl=dp[l][k], pr=dp[r-fac[k]+1][k]; 52 if(str[pl]<=str[pr]) 53 p=pl; 54 else 55 p=pr; 56 ans[tot++]=p; 57 l=p+1; 58 m--; 59 } 60 int flag=0; 61 for(int i=0;i<tot;i++){ 62 if(!(str[dp[ans[i]][0]]-'0')){ 63 if(flag) 64 printf("%c",str[ans[i]]); 65 }else{ 66 flag=1; 67 printf("%c",str[ans[i]]); 68 } 69 } 70 if(!flag) 71 printf("0"); 72 cout<<endl; 73 } 74 return 0; 75 }