什麼是電腦程式設計? 簡單的說,它就是告訴電腦要做什麼。電腦可以做很多事情,但是不太擅長自主思考,程式員需要像給小孩子喂飯一樣告訴它具體的細節,並且使電腦能夠理解的語言——演算法。 演算法(Algorithm)是指解題方案的準確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述 ...
什麼是電腦程式設計?
簡單的說,它就是告訴電腦要做什麼。電腦可以做很多事情,但是不太擅長自主思考,程式員需要像給小孩子喂飯一樣告訴它具體的細節,並且使電腦能夠理解的語言——演算法。
演算法(Algorithm)是指解題方案的準確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規範的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間複雜度與時間複雜度來衡量。
演算法中的指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化演算法在內的一些演算法,包含了一些隨機輸入。
形式化演算法的概念部分源自嘗試解決希爾伯特提出的判定問題,併在其後嘗試定義有效計算性或者有效方法中成形。這些嘗試包括庫爾特·哥德爾、Jacques Herbrand和斯蒂芬·科爾·克萊尼分別於1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾倫·圖靈1937年提出的圖靈機。即使在當前,依然常有直覺想法難以定義為形式化演算法的情況。
特征
一個演算法應該具有以下五個重要的特征:
1、有窮性(Finiteness)
演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;
2、確切性(Definiteness)
演算法的每一步驟必須有確切的定義;
3、輸入項(Input)
一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;
4、輸出項(Output)
一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
5、可行性(Effectiveness)
演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步,即每個計算步都可以在有限時間內完成(也稱之為有效性)。
要素
一,數據對象的運算和操作:電腦可以執行的基本操作是以指令的形式描述的。一個電腦系統能執行的所有指令的集合,成為該電腦系統的指令系統。一個電腦的基本運算和操作有如下四類:
1,算術運算:加減乘除等運算
2,邏輯運算:或、且、非等運算
3,關係運算:大於、小於、等於、不等於等運算
4,數據傳輸:輸入、輸出、賦值等運算[1]
二,演算法的控制結構:一個演算法的功能結構不僅取決於所選用的操作,而且還與各操作之間的執行順序有關。
分類
演算法可大致分為基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法,厄米變形模型,隨機森林演算法。
演算法可以巨集泛的分為三類:
一,有限的,確定性演算法 這類演算法在有限的一段時間內終止。他們可能要花很長時間來執行指定的任務,但仍將在一定的時間內終止。這類演算法得出的結果常取決於輸入值。
二,有限的,非確定演算法 這類演算法在有限的時間內終止。然而,對於一個(或一些)給定的數值,演算法的結果並不是唯一的或確定的。
三,無限的演算法 是那些由於沒有定義終止定義條件,或定義的條件無法由輸入的數據滿足而不終止運行的演算法。通常,無限演算法的產生是由於未能確定的定義終止條件。
更多關於演算法的介紹可以通過搜索相關資料查閱。