有關LZF演算法的相關解析文檔比較少,但是Apple對LZF的開源,可以讓我們對該演算法進行一個簡單的解析。LZFSE 基於 Lempel-Ziv ,並使用了有限狀態熵編碼。LZF採用類似lz77和lzss的混合編碼。使用3種“起始標記”來代表每段輸出的數據串。 接下來看一下開源的LZF演算法的實現源碼。 ...
有關LZF演算法的相關解析文檔比較少,但是Apple對LZF的開源,可以讓我們對該演算法進行一個簡單的解析。LZFSE 基於 Lempel-Ziv ,並使用了有限狀態熵編碼。LZF採用類似lz77和lzss的混合編碼。使用3種“起始標記”來代表每段輸出的數據串。
接下來看一下開源的LZF演算法的實現源碼。
1.定義的全局欄位:
private readonly long[] _hashTable = new long[Hsize]; private const uint Hlog = 14; private const uint Hsize = (1 << 14); private const uint MaxLit = (1 << 5); private const uint MaxOff = (1 << 13); private const uint MaxRef = ((1 << 8) + (1 << 3));
2.使用LibLZF演算法壓縮數據:
/// <summary> /// 使用LibLZF演算法壓縮數據 /// </summary> /// <param name="input">需要壓縮的數據</param> /// <param name="inputLength">要壓縮的數據的長度</param> /// <param name="output">引用將包含壓縮數據的緩衝區</param> /// <param name="outputLength">壓縮緩衝區的長度(應大於輸入緩衝區)</param> /// <returns>輸出緩衝區中壓縮歸檔的大小</returns> public int Compress(byte[] input, int inputLength, byte[] output, int outputLength) { Array.Clear(_hashTable, 0, (int)Hsize); uint iidx = 0; uint oidx = 0; var hval = (uint)(((input[iidx]) << 8) | input[iidx + 1]); var lit = 0; for (; ; ) { if (iidx < inputLength - 2) { hval = (hval << 8) | input[iidx + 2]; long hslot = ((hval ^ (hval << 5)) >> (int)(((3 * 8 - Hlog)) - hval * 5) & (Hsize - 1)); var reference = _hashTable[hslot]; _hashTable[hslot] = iidx; long off; if ((off = iidx - reference - 1) < MaxOff && iidx + 4 < inputLength && reference > 0 && input[reference + 0] == input[iidx + 0] && input[reference + 1] == input[iidx + 1] && input[reference + 2] == input[iidx + 2] ) { uint len = 2; var maxlen = (uint)inputLength - iidx - len; maxlen = maxlen > MaxRef ? MaxRef : maxlen; if (oidx + lit + 1 + 3 >= outputLength) return 0; do len++; while (len < maxlen && input[reference + len] == input[iidx + len]); if (lit != 0) { output[oidx++] = (byte)(lit - 1); lit = -lit; do output[oidx++] = input[iidx + lit]; while ((++lit) != 0); } len -= 2; iidx++; if (len < 7) { output[oidx++] = (byte)((off >> 8) + (len << 5)); } else { output[oidx++] = (byte)((off >> 8) + (7 << 5)); output[oidx++] = (byte)(len - 7); } output[oidx++] = (byte)off; iidx += len - 1; hval = (uint)(((input[iidx]) << 8) | input[iidx + 1]); hval = (hval << 8) | input[iidx + 2]; _hashTable[((hval ^ (hval << 5)) >> (int)(((3 * 8 - Hlog)) - hval * 5) & (Hsize - 1))] = iidx; iidx++; hval = (hval << 8) | input[iidx + 2]; _hashTable[((hval ^ (hval << 5)) >> (int)(((3 * 8 - Hlog)) - hval * 5) & (Hsize - 1))] = iidx; iidx++; continue; } } else if (iidx == inputLength) break; lit++; iidx++; if (lit != MaxLit) continue; if (oidx + 1 + MaxLit >= outputLength) return 0; output[oidx++] = (byte)(MaxLit - 1); lit = -lit; do output[oidx++] = input[iidx + lit]; while ((++lit) != 0); } if (lit == 0) return (int)oidx; if (oidx + lit + 1 >= outputLength) return 0; output[oidx++] = (byte)(lit - 1); lit = -lit; do output[oidx++] = input[iidx + lit]; while ((++lit) != 0); return (int)oidx; }
3.
/// <summary> /// 使用LibLZF演算法解壓縮數據 /// </summary> /// <param name="input">參考數據進行解壓縮</param> /// <param name="inputLength">要解壓縮的數據的長度</param> /// <param name="output">引用包含解壓縮數據的緩衝區</param> /// <param name="outputLength">輸出緩衝區中壓縮歸檔的大小</param> /// <returns>返回解壓縮大小</returns> public int Decompress(byte[] input, int inputLength, byte[] output, int outputLength) { uint iidx = 0; uint oidx = 0; do { uint ctrl = input[iidx++]; if (ctrl < (1 << 5)) { ctrl++; if (oidx + ctrl > outputLength) { return 0; } do output[oidx++] = input[iidx++]; while ((--ctrl) != 0); } else { var len = ctrl >> 5; var reference = (int)(oidx - ((ctrl & 0x1f) << 8) - 1); if (len == 7) len += input[iidx++]; reference -= input[iidx++]; if (oidx + len + 2 > outputLength) { return 0; } if (reference < 0) { return 0; } output[oidx++] = output[reference++]; output[oidx++] = output[reference++]; do output[oidx++] = output[reference++]; while ((--len) != 0); } } while (iidx < inputLength); return (int)oidx; }
以上是LZF演算法的代碼。