一、預備知識—程式的記憶體分配 一個由C/C++編譯的程式占用的記憶體分為以下幾個部分 : 1、棧區(stack)— 由編譯器自動分配釋放 ,存放函數的參數值,局部變數的值等。其 操作方式類似於數據結構中的棧。 2、堆區(heap) — 一般由程式員分配釋放, 若程式員不釋放,程式結束時可能由OS回 收 ...
一、預備知識—程式的記憶體分配
一個由C/C++編譯的程式占用的記憶體分為以下幾個部分 :
1、棧區(stack)— 由編譯器自動分配釋放 ,存放函數的參數值,局部變數的值等。其
操作方式類似於數據結構中的棧。
2、堆區(heap) — 一般由程式員分配釋放, 若程式員不釋放,程式結束時可能由OS回
收 。註意它與數據結構中的堆是兩回事,分配方式倒是類似於鏈表,呵呵。
3、全局區(靜態區)(static)—,全局變數和靜態變數的存儲是放在一塊的,初始化的
全局變數和靜態變數在一塊區域, 未初始化的全局變數和未初始化的靜態變數在相鄰的另
一塊區域。 - 程式結束後由系統釋放。
4、文字常量區 —常量字元串就是放在這裡的。 程式結束後由系統釋放
5、程式代碼區—存放函數體的二進位代碼。
例子程式:
這是一個前輩寫的,非常詳細
//main.cpp
int a = 0; 全局初始化區
char *p1; 全局未初始化區
main()
{
int b; 棧
char s[] = "abc"; 棧
char *p2; 棧
char *p3 = "123456"; 123456\0在常量區,p3在棧上。
static int c =0; 全局(靜態)初始化區
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);
分配得來得10和20位元組的區域就在堆區。
strcpy(p1, "123456"); 123456\0放在常量區,編譯器可能會將它與p3所指向的"123456"
優化成一個地方。
} 二、堆和棧的理論知識
2.1申請方式
stack:
由系統自動分配。 例如,聲明在函數中一個局部變數 int b; 系統自動在棧中為b開闢空
間
heap:
需要程式員自己申請,並指明大小,在c中malloc函數
如p1 = (char *)malloc(10);
在C++中用new運算符
如p2 = new char[10];
但是註意p1、p2本身是在棧中的。
2.2
申請後系統的響應
棧:只要棧的剩餘空間大於所申請空間,系統將為程式提供記憶體,否則將報異常提示棧溢
出。
堆:首先應該知道操作系統有一個記錄空閑記憶體地址的鏈表,當系統收到程式的申請時,
會遍歷該鏈表,尋找第一個空間大於所申請空間的堆結點,然後將該結點從空閑結點鏈表
中刪除,並將該結點的空間分配給程式,另外,對於大多數系統,會在這塊記憶體空間中的
首地址處記錄本次分配的大小,這樣,代碼中的delete語句才能正確的釋放本記憶體空間。
另外,由於找到的堆結點的大小不一定正好等於申請的大小,系統會自動的將多餘的那部
分重新放入空閑鏈表中。
2.3申請大小的限制
棧:在Windows下,棧是向低地址擴展的數據結構,是一塊連續的記憶體的區域。這句話的意
思是棧頂的地址和棧的最大容量是系統預先規定好的,在WINDOWS下,棧的大小是2M(也有
的說是1M,總之是一個編譯時就確定的常數),如果申請的空間超過棧的剩餘空間時,將
提示overflow。因此,能從棧獲得的空間較小。
堆:堆是向高地址擴展的數據結構,是不連續的記憶體區域。這是由於系統是用鏈表來存儲
的空閑記憶體地址的,自然是不連續的,而鏈表的遍歷方向是由低地址向高地址。堆的大小
受限於電腦系統中有效的虛擬記憶體。由此可見,堆獲得的空間比較靈活,也比較大。
2.4申請效率的比較:
棧由系統自動分配,速度較快。但程式員是無法控制的。
堆是由new分配的記憶體,一般速度比較慢,而且容易產生記憶體碎片,不過用起來最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配記憶體,他不是在堆,也不是在棧是
直接在進程的地址空間中保留一塊記憶體,雖然用起來最不方便。但是速度快,也最靈活。
2.5堆和棧中的存儲內容
棧: 在函數調用時,第一個進棧的是主函數中後的下一條指令(函數調用語句的下一條可
執行語句)的地址,然後是函數的各個參數,在大多數的C編譯器中,參數是由右往左入棧
的,然後是函數中的局部變數。註意靜態變數是不入棧的。
當本次函數調用結束後,局部變數先出棧,然後是參數,最後棧頂指針指向最開始存的地
址,也就是主函數中的下一條指令,程式由該點繼續運行。
堆:一般是在堆的頭部用一個位元組存放堆的大小。堆中的具體內容由程式員安排。
2.6存取效率的比較
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在運行時刻賦值的;
而bbbbbbbbbbb是在編譯時就確定的;
但是,在以後的存取中,在棧上的數組比指針所指向的字元串(例如堆)快。
比如:
#include
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
對應的彙編代碼
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一種在讀取時直接就把字元串中的元素讀到寄存器cl中,而第二種則要先把指針值讀到
edx中,再根據edx讀取字元,顯然慢了。
2.7小結:
堆和棧的區別可以用如下的比喻來看出:
使用棧就象我們去飯館里吃飯,只管點菜(發出申請)、付錢、和吃(使用),吃飽了就
走,不必理會切菜、洗菜等準備工作和洗碗、刷鍋等掃尾工作,他的好處是快捷,但是自
由度小。
使用堆就象是自己動手做喜歡吃的菜餚,比較麻煩,但是比較符合自己的口味,而且自由
度大。 (經典!)