跟我學Python圖像處理丨傅里葉變換之高通濾波和低通濾波

来源:https://www.cnblogs.com/huaweiyun/archive/2022/09/28/16737458.html
-Advertisement-
Play Games

摘要:本文講解基於傅里葉變換的高通濾波和低通濾波。 本文分享自華為雲社區《[Python圖像處理] 二十三.傅里葉變換之高通濾波和低通濾波》,作者:eastmount 。 一.高通濾波 傅里葉變換的目的並不是為了觀察圖像的頻率分佈(至少不是最終目的),更多情況下是為了對頻率進行過濾,通過修改頻率以達 ...


摘要:本文講解基於傅里葉變換的高通濾波和低通濾波。

本文分享自華為雲社區《[Python圖像處理] 二十三.傅里葉變換之高通濾波和低通濾波》,作者:eastmount 。

一.高通濾波

傅里葉變換的目的並不是為了觀察圖像的頻率分佈(至少不是最終目的),更多情況下是為了對頻率進行過濾,通過修改頻率以達到圖像增強、圖像去噪、邊緣檢測、特征提取、壓縮加密等目的。

過濾的方法一般有三種:低通(Low-pass)、高通(High-pass)、帶通(Band-pass)。所謂低通就是保留圖像中的低頻成分,過濾高頻成分,可以把過濾器想象成一張漁網,想要低通過濾器,就是將高頻區域的信號全部拉黑,而低頻區域全部保留。例如,在一幅大草原的圖像中,低頻對應著廣袤且顏色趨於一致的草原,表示圖像變換緩慢的灰度分量;高頻對應著草原圖像中的老虎等邊緣信息,表示圖像變換較快的灰度分量,由於灰度尖銳過度造成

高通濾波器是指通過高頻的濾波器,衰減低頻而通過高頻,常用於增強尖銳的細節,但會導致圖像的對比度會降低。該濾波器將檢測圖像的某個區域,根據像素與周圍像素的差值來提升像素的亮度。圖展示了“Lena”圖對應的頻譜圖像,其中心區域為低頻部分。

接著通過高通濾波器覆蓋掉中心低頻部分,將255兩點變換為0,同時保留高頻部分,其處理過程如下圖所示。

rows, cols = img.shape
crow,ccol = int(rows/2), int(cols/2)
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0

通過高通濾波器將提取圖像的邊緣輪廓,生成如下圖所示圖像。

# -*- coding: utf-8 -*-
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
#讀取圖像
img = cv.imread('Lena.png', 0)
#傅里葉變換
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
#設置高通濾波器
rows, cols = img.shape
crow,ccol = int(rows/2), int(cols/2)
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0
#傅里葉逆變換
ishift = np.fft.ifftshift(fshift)
iimg = np.fft.ifft2(ishift)
iimg = np.abs(iimg)
#顯示原始圖像和高通濾波處理圖像
plt.subplot(121), plt.imshow(img, 'gray'), plt.title('Original Image')
plt.axis('off')
plt.subplot(122), plt.imshow(iimg, 'gray'), plt.title('Result Image')
plt.axis('off')
plt.show()

輸出結果如下圖所示,第一幅圖為原始“Lena”圖,第二幅圖為高通濾波器提取的邊緣輪廓圖像。它通過傅里葉變換轉換為頻譜圖像,再將中心的低頻部分設置為0,再通過傅里葉逆變換轉換為最終輸出圖像“Result Image”。

二.低通濾波

低通濾波器是指通過低頻的濾波器,衰減高頻而通過低頻,常用於模糊圖像。低通濾波器與高通濾波器相反,當一個像素與周圍像素的插值小於一個特定值時,平滑該像素的亮度,常用於去燥和模糊化處理。如PS軟體中的高斯模糊,就是常見的模糊濾波器之一,屬於削弱高頻信號的低通濾波器。

下圖展示了“Lena”圖對應的頻譜圖像,其中心區域為低頻部分。如果構造低通濾波器,則將頻譜圖像中心低頻部分保留,其他部分替換為黑色0,其處理過程如圖所示,最終得到的效果圖為模糊圖像。

那麼,如何構造該濾波圖像呢?如下圖所示,濾波圖像是通過低通濾波器和頻譜圖像形成。其中低通濾波器中心區域為白色255,其他區域為黑色0。

低通濾波器主要通過矩陣設置構造,其核心代碼如下:

rows, cols = img.shape
crow,ccol = int(rows/2), int(cols/2)
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1

通過低通濾波器將模糊圖像的完整代碼如下所示:

# -*- coding: utf-8 -*-
import cv2
import numpy as np
from matplotlib import pyplot as plt
#讀取圖像
img = cv2.imread('lena.bmp', 0)
#傅里葉變換
dft = cv2.dft(np.float32(img), flags = cv2.DFT_COMPLEX_OUTPUT)
fshift = np.fft.fftshift(dft)
#設置低通濾波器
rows, cols = img.shape
crow,ccol = int(rows/2), int(cols/2) #中心位置
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1
#掩膜圖像和頻譜圖像乘積
f = fshift * mask
print f.shape, fshift.shape, mask.shape
#傅里葉逆變換
ishift = np.fft.ifftshift(f)
iimg = cv2.idft(ishift)
res = cv2.magnitude(iimg[:,:,0], iimg[:,:,1])
#顯示原始圖像和低通濾波處理圖像
plt.subplot(121), plt.imshow(img, 'gray'), plt.title('Original Image')
plt.axis('off')
plt.subplot(122), plt.imshow(res, 'gray'), plt.title('Result Image')
plt.axis('off')
plt.show()

輸出結果如圖所示,第一幅圖為原始“Lena”圖,第二幅圖為低通濾波器模糊處理後的圖像。

 

點擊關註,第一時間瞭解華為雲新鮮技術~


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • 綜述下關鍵點,代碼規範檢查基本原理可以基於AST語法樹來進行實現;AST結合Xpath可以方便進行相關規範規則的編寫;通過 PMD-Designer 能可視化的幫助我們實現 XPath 的相關代碼規範規則以及驗證相關規則;給出了一個例子... ...
  • 概念 線程死鎖描述的是這樣一種情況:多個線程同時被阻塞,它們中的一個或者全部都在等待某個資源被釋放。由於線程被無限期地阻塞,因此程式不可能正常終止。 我和同學都打掃衛生,我拿著掃帚等他的簸箕,他拿著簸箕等我的掃帚 產生條件 互斥條件:同一時刻一線程只能占用一個資源。 同一時刻,我拿著掃帚,他拿著簸箕 ...
  • 面向過程與函數式 面向過程 ”面向過程“核心是“過程”二字,“過程”指的是解決問題的步驟,即先乾什麼再乾什麼......,基於面向過程開發程式就好比在設計一條流水線,是一種機械式的思維方式,這正好契合電腦的運行原理:任何程式的執行最終都需要轉換成cpu的指令流水按過程調度執行,即無論採用什麼語言、 ...
  • java基礎-集合 以下內容為本人的學習筆記,如需要轉載,請聲明原文鏈接 https://www.cnblogs.com/lyh1024/p/16738857.html 1.集合框架概述 1.1集合框架 的作用 在實際開發中,我們經常會對一組相同類型的數據進行統一管理操作。到目前為止,我們可以使用數 ...
  • 你知道嗎,在 Jmix 中,REST API 有兩種實現方式! 很多應用是採取前後端分離的方式進行開發。這種模式下,對前端的選擇相對靈活,可以根據團隊的擅長技能選擇流行的 Angular/React/Vue 之一,或者前端為App/小程式等手機應用。Jmix 的一種典型應用場景就是作為這種類型應用程 ...
  • 1.問題分析 1.1. 公司雲桌面win7系統把之前C盤中自帶的py3.7環境給還原了,之前跑得好好的PlayWright案例不能運行了 2.解決過程 2.1. 參考網上的解決方案,說是node的版本問題,但是我將之前可以運行的V12.22.12版本回退到V12.9.1以後,還是不行,但是我發現我的 ...
  • Mac下protobuf生成文件報錯問題解決辦法,windows下就不會這麼麻煩了,如果linux下出現類似報錯信息按照下麵的解決邏輯依然適用。 1、由--go_out引發的報錯 1.報錯信息: user@C02FP58GML7H pbfile % protoc --go_out=./ ./user ...
  • 1.property 裝飾器:裝飾器是在不修改被裝飾對象源代碼以及調用方式的前提下為被裝飾對象添加新功能的可調用對象 property是一個裝飾器,是用來綁定給對象的方法偽造成一個數據屬性 裝飾器property,可以將類中的函數“偽裝成”對象的數據屬性,對象在訪問該特殊屬性時會觸發功能的執行,然後 ...
一周排行
    -Advertisement-
    Play Games
  • 背景 在瀏覽器中訪問本地靜態資源html網頁時,可能會遇到跨域問題如圖。 是因為瀏覽器預設啟用了同源策略,即只允許載入與當前網頁具有相同源(協議、功能變數名稱和埠)的內容。 WebView2預設情況下啟用了瀏覽器的同源策略,即只允許載入與主機相同源的內容。所以如果我們把靜態資源發佈到iis或者通過node ...
  • 最近看幾個老項目的SQL條件中使用了1=1,想想自己也曾經這樣寫過,略有感觸,特別拿出來說道說道。編寫SQL語句就像炒菜,每一種調料的使用都會影響菜品的最終味道,每一個SQL條件的加入也會影響查詢的執行效率。那麼 1=1 存在什麼樣的問題呢?為什麼又會使用呢? ...
  • 好久不見,我又回來了。 給大家分享一個我最近使用c#代碼操作ftp伺服器的代碼示例: 1 public abstract class FtpOperation 2 { 3 /// <summary> 4 /// FTP伺服器地址 5 /// </summary> 6 private string f ...
  • 一:背景 1. 講故事 過年喝了不少酒,腦子不靈光了,停了將近一個月沒寫博客,今天就當新年開工寫一篇吧。 去年年初有位朋友找到我,說他們的系統會偶發性崩潰,在網上也發了不少帖子求助,沒找到自己滿意的答案,讓我看看有沒有什麼線索,看樣子這是一個牛皮蘚的問題,既然對方有了dump,那就分析起來吧。 二: ...
  • 自己製作的一個基於Entity Framework Core 的資料庫操作攔截器,可以列印資料庫執行sql,方便開發調試,代碼如下: /// <summary> /// EF Core 的資料庫操作攔截器,用於在資料庫操作過程中進行日誌記錄和監視。 /// </summary> /// <remar ...
  • 本文分享自華為雲社區《Go併發範式 流水線和優雅退出 Pipeline 與 Cancellation》,作者:張儉。 介紹 Go 的併發原語可以輕鬆構建流數據管道,從而高效利用 I/O 和多個 CPU。 本文展示了此類pipelines的示例,強調了操作失敗時出現的細微之處,並介紹了乾凈地處理失敗的 ...
  • 在上篇文章中,我們介紹到在多線程環境下,如果編程不當,可能會出現程式運行結果混亂的問題。出現這個原因主要是,JMM 中主記憶體和線程工作記憶體的數據不一致,以及多個線程執行時無序,共同導致的結果。 ...
  • 1、下載安裝包首先、進入官網下載安裝包網址:https://www.python.org/downloads/windows/下載步驟:進入下載地址,根據自己的電腦系統選擇相應的python版本 選擇適配64位操作系統的版本(查看自己的電腦操作系統版本), 點擊下載安裝包 也可以下載我百度雲分享的安 ...
  • 簡介 git-commit-id-maven-plugin 是一個maven 插件,用來在打包的時候將git-commit 信息打進jar中。 這樣做的好處是可以將發佈的某版本和對應的代碼關聯起來,方便查閱和線上項目的維護。至於它的作用,用官方說法,這個功能對於大型分散式項目來說是無價的。 功能 你 ...
  • 序言 在數字時代,圖像生成技術正日益成為人工智慧領域的熱點。 本討論將重點聚焦於兩個備受矚目的模型:DALL-E和其他主流AI繪圖方法。 我們將探討它們的優勢、局限性以及未來的發展方向。通過比較分析,我們期望能夠更全面地瞭解這些技術,為未來的研究和應用提供啟示。 Q: 介紹一下 dall-e Ope ...