【多線程那些事兒】多線程的執行順序如你預期嗎?

来源:https://www.cnblogs.com/lc19890709/archive/2022/09/27/16735156.html
-Advertisement-
Play Games

前言 在使用SpringBoot的時候經常需要對客戶端傳入的參數進行合法性的校驗,校驗的方法基本上都是使用SpringBoot提供的註解,有時候遇上註解不能滿足需求的時候還需要在業務邏輯上進行判斷。這樣根本就沒有實現解耦。 使用方法 項目maven引入 <dependency> <groupId>c ...


一個簡單的例子

先來看一個多線程的例子:

graph TB begin(a)-->線程1(x = 1, m = y) begin(x = 0, y = 0)-->線程2(y = 1, n = x)

如圖所示,我們將變數x和y初始化為0,然後線上程1中執行:

	x = 1, m = y;

同時線上程2中執行:

	y = 1, n = x;

當兩個線程都執行結束以後,m和n的值分別是多少呢?

對於已經工作了n年、寫過無數次併發程式的的我們來說,這還不是小case嗎?讓我們來分析一下,大概有三種情況:

  1. 如果程式先執行了x = 1, m = y代碼段,後執行了y = 1, n = x代碼段,那麼結果是m = 0, n = 1;
  2. 如果程式先執行了y = 1, n = x代碼段,後執行了x = 1, m = y代碼段,那麼結果是m = 1, n = 0;
  3. 如果程式的執行順序先是 x = 1, y = 1, 後執行m = y, n = x, 那麼結果是m = 1, n = 1;

所以(m, n)的組合一共有3種情況,分別是(0, 1), (1, 0)和(1, 1)。

那有沒有可能程式執行結束後,(m, n)的值是(0, 0)呢?嗯...我們又仔細的回顧了一下自己的分析過程:在m和n被賦值的時候,x = 1和y = 1至少有一條語句被執行了...沒有問題,那應該就不會出現m和n都是0的情況。

詭異的輸出結果

不過人在江湖上混,還是要嚴謹一點。好在這代碼邏輯也不複雜,那就寫一段簡單的程式來驗證下吧:

#include <iostream>
#include <thread>

using namespace std;

int x = 0, y = 0, m = 0, n = 0;
int main()
{
	while (1) {
		x = y = 0;
		thread t1([&]() { x = 1; m = y; });
		thread t2([&]() { y = 1; n = x; });
		t1.join(); t2.join();

		if (m == 0 && n == 0) {
			cout << " m == 0 && n == 0 ? impossible!\n";
		}
	}
	return 0;
}

考慮到多線程的隨機性,就寫一個無限迴圈多跑一會吧,反正屏幕也不會有什麼輸出。我們信心滿滿的把程式跑了起來,但很快就發現有點不太對勁:

m和n居然真的同時為0了?不可能不可能...這難道是windows或者msvc的bug?那我們到linux上用g++編譯試一下,結果程式跑起來之後,又看到了熟悉的輸出:

這...打臉未免來得也太快了吧!

你看到的執行順序不是真的執行順序

看來這不是bug,真的是有可能出現m和n都是0的情況。可是,到底是為什麼呢?恍惚之間,我們突然想起曾經似乎在哪看過這樣一個as-if規則:

The rule that allows any and all code transformations that do not change the observable behavior of the program.

也就是說,在不影響可觀測結果的前提下,編譯器是有可能對程式的代碼進行重排,以取得更好的執行效率的。比如像這樣的代碼:

int a, b;
void test()
{
	a = b + 1;
	b = 1;
}

編譯器是完全有可能重新排列成下麵的樣子的:

int a, b;
void test()
{
	int c = b;
	b = 1;
	c += 1;
	a = c;
}

這樣,程式在實際執行過程中對a的賦值就晚於對b的賦值之後了。不過,有了前車之鑒,我們還是先驗證一下在下結論吧。我們使用gcc的-S選項,生成彙編代碼(開啟-O2優化)來看一下,編譯器生成的指令到底是什麼樣子的:

哈哈,果然如我們所料,對a的賦值被調整到對b的賦值後面了!那上面m和n同時為0也一定是因為編譯器重新排序我們的指令順序導致的!想到這裡,我們的底氣又漸漸回來了。那就生成彙編代碼看看吧:

果然不出所料,因為我們在編譯的時候開了-O3優化,賦值的順序被重排了!代碼實際的執行順序大概是下麵這個樣子:

	int t1 = y; x = 1; m = t1; //線程1
	int t2 = x; y = 1; n = t2; //線程2

這就難怪會出現m = 0, n = 0這樣的結果了。分析到這裡,我們終於有點鬆了一口氣,這多年的編程經驗可不是白來的,總算是給出了一個合理的解釋。
那我們在編譯的時候把-O3優化選項去掉,儘量讓編譯器不要進行優化,保持原來的指令執行順序,應該就可以避免m和n同時為0的結果了吧?試試,保險起見,我們還是先看一看彙編代碼吧:

跟我們的預期一致,彙編代碼保持了原來的執行順序,這回肯定沒有問題了。那就把程式跑起來吧。然而...不一會兒,熟悉的列印又出現了...

這...到底是怎麼回事?!!!

你看到的執行順序還不是真正的執行順序

如果不是編譯器重排了我們的指令順序,那還會是什麼呢?難道是CPU?!
還真是。實際上,現代CPU為了提高執行效率,大多都採用了流水線技術。例如:一個執行過程可以被分為:取指(IF),解碼(ID),執行(EX),訪存(MEM),回寫(WB)等階段。這樣,當第一條指令在執行的時候,第二條指令可以進行解碼,第三條指令可以進行取指...於是CPU被充分利用了,指令的執行效率也大大提高。一個標準的5級流水線的工作過程如下表所示(實際的CPU流水線遠比這複雜得多):

序號/時鐘周期 1 2 3 4 5 6 7 ...
1 IF ID EX MEM WB
2 IF ID EX MEM WB
3 IF ID EX MEM WB
4 IF ID EX MEM WB
5 IF ID EX MEM
6 IF ID EX

上面展示的指令流水線是完美的,然而實際情況往往沒有這麼理想。考慮這樣一種情況,假設第二條指令依賴於第一條指令的執行結果,而第一條指令恰巧又是一個比較耗時的操作,那麼整個流水線就停止了。即使第三條指令與前兩條指令完全無關,它也必須等到第一條指令執行完成,流水線繼續運轉時才能得已執行。這就浪費了CPU的執行帶寬。亂序執行(Out-Of-Order Execution)就是被用來解決這一問題的,它也是現代CPU提升執行效率的基礎技術之一。
簡單來說,亂序執行是指CPU提前分析待執行的指令,調整指令的執行順序,以期發揮更高流水線執行效率的一種技術。引入亂序執行技術以後,CPU執行指令過程大概是下麵這個樣子:

graph TB; IF(取指)-->ID(解碼)-->ICache(指令緩存區) ICache-->EX1((執行單元))-->ReOrder(執行完成順序重排緩衝區) ICache-->EX2[執行單元]-->ReOrder ICache-->EX3([執行單元])-->ReOrder ICache-->EX4[[執行單元]]-->ReOrder ReOrder-->WB(提交/寫回)

所以,上面的程式出現(m, n)結果為(0, 0)的情況,應該就是因為指令的執行順序被CPU重排了!

C++多線程記憶體模型

我們通常將讀取操作稱為load,存儲操作稱為store。對應的記憶體操作順序有以下幾種:

  1. load->load(讀讀)
  2. load->store(讀寫)
  3. store->load(寫讀)
  4. store->store(寫寫)

CPU在執行指令的時候,會根據情況對記憶體操作順序進行重新排列。也就是說,我們只要能夠讓CPU不要進行指令重排優化,那麼應該就不會出現(m, n)為(0, 0)的情況了。但具體要怎麼做呢?
實際上,在C++11之前,我們很難在語言層面做到這件事情。那時的C++甚至連線程都不支持,更別提什麼記憶體模型了。在C++98的年代,我們只能通過嵌入彙編的方式添加記憶體屏障來達到這樣的目的:

asm volatile("mfence" ::: "memory");

不過在現代C++中,要做這樣的事情就簡單多了。C++11引入了原子類型(atomic),同時規定了6種記憶體執行順序:

  1. memory_order_relaxed: 鬆散的,在保證原子性的前提下,允許進行任務的重新排序;
  2. memory_order_release: 代碼中這條語句前的所有讀寫操作, 不允許被重排到這個操作之後;
  3. memory_order_acquire: 代碼中這條語句後的所有讀寫操作,不允許被重排到這個操作之前;
  4. memory_order_consume: 代碼中這條語句後所有與這塊記憶體相關的讀寫操作,不允許被重排到這個操作之前;註意,這個類型已不建議被使用;
  5. memory_order_acq_rel: 對讀取和寫入施加acquire-release語義,無法被重排;
  6. memory_order_seq_cst: 順序一致性,如果是寫入就是release語義,如果是讀取是acquire語義,如果是讀取-寫入就是acquire-release語義;也是原子變數的預設語義。

所以,我們只需要將x和y的類型改為atmioc_int,就可以避免m和n同時為0的結果出現了。修改後的代碼如下:

#include <iostream>
#include <thread>
#include <atomic>

using namespace std;

atomic_int x(0);
atomic_int y(0);
int m = 0, n = 0;
int main()
{
        while (1) {
                x = y = 0;
                thread t1([&]() { x = 1; m = y; });
                thread t2([&]() { y = 1; n = x; });
                t1.join(); t2.join();

                if (m == 0 && n == 0) {
                        cout << " m == 0 && n == 0 ? impossible!\n";
                }
        }
        return 0;
}

現在編譯運行一下,看看結果:

已經不會再出現"impossible"的列印了。我們再來看看生成的彙編代碼:

原來編譯器已經自動幫我們插入了記憶體屏障,這樣就再也不會出現(m, n)為(0, 0)的情況了。

全文完。


您的分享是我們最大的動力!

-Advertisement-
Play Games
更多相關文章
  • ###一、簡介 什麼是分散式爬蟲? 分散式爬蟲就是把一個爬蟲任務放到多台機器上去運行,提高爬取效率 但是每台機器運行同一套代碼,都在各自的任務和去重隊列,等於各爬各的,最終爬的數據是相同的 因此需要提供一個公共的去重隊列和公共的任務隊列,多台機器都在共用的隊列中去調度和去重,然後分別爬取 原來scr ...
  • 可視化打包 exe,這個神器絕了 auto-py-to-exe 是一個用於將Python程式打包成可執行文件的圖形化工具。本文就是主要介紹如何使用 auto-py-to-exe 完成 python 程式打包。auto-py-to-exe 基於 pyinstaller ,相比於 pyinstaller ...
  • 如何將編寫的c語言程式打包成exe可執行文件呢? 以前我們寫程式很多是在編輯器上,讓編輯起來編譯運行我們的程式。如果想將其打包成exe可執行文件該如何做? 我這裡推薦使用codeBlocks的gcc命令,因為比較簡單。像vs這種編輯器就像是一把屠龍刀。功能過於複雜,需要註意的很多。如何適用codeB ...
  • 《Go 精進之路》 讀書筆記。簡要記錄自己打五角星的部分,方便複習鞏固。目前看到p120 Go 語言遵從的設計哲學為組合 垂直組合:類型嵌入,快速讓一個類型復用其他類型已經實現的能力,實現功能的垂直擴展。 水平組合:介面實現鴨子類型。 變數名字中不要帶有類型信息 userSlice []*User ...
  • 怎麼借鑒開源代碼來打造一些自身面對的問題解決方案?也許有一些Demo來進行回答演示或許更為貼近地氣些。這裡打算寫一些玩轉源碼為主題的文字來實踐的回答,最近在看P3C的一些源碼,那就從這開始吧。 ...
  • 什麼是 Session 會話? 1、Session 就一個介面(HttpSession)。 2、Session 就是會話。它是用來維護一個客戶端和伺服器之間關聯的一種技術。 3、每個客戶端都有自己的一個 Session 會話。 4、Session 會話中,我們經常用來保存用戶登錄之後的信息。 如何創 ...
  • Spring中AOP的底層原理就是動態代理模式,所以我們在這裡對代理模式進行學習。 一、代理模式 1.什麼是代理 代理,顧名思義,就是一個人代替另一個人去做他需要做的事情。代理是一種設計模式,具體實現就是一個類代替某個類去實現功能。 我們舉一個例子: 我要租房子,我可以找房東直接租房子。同樣我可以找 ...
  • 特殊說明:第一章只包含了 初始化上下文,初始化監聽器列表,發佈springboot啟動事件 相關內容 其中一部分代碼 /** * Run the Spring application, creating and refreshing a new * {@link ApplicationContext ...
一周排行
    -Advertisement-
    Play Games
  • 1.部署歷史 猿友們好,作為初來實習的我,已經遭受社會的“毒打”,所以請容許我在下麵環節適當吐槽,3Q! 傳統部署 ​ 回顧以往在伺服器部署webapi項目(非獨立發佈),dotnet環境、守護進程兩個逃都逃不掉,正常情況下還得來個nginx代理。不僅僅這仨,可能牽扯到yum或npm。node等都要 ...
  • 隨著技術的進步,跨平臺開發已經成為了標配,在此大背景下,ASP.NET Core也應運而生。本文主要基於ASP.NET Core+Element+Sql Server開發一個校園圖書管理系統為例,簡述基於MVC三層架構開發的常見知識點,前一篇文章,已經簡單介紹瞭如何搭建開發框架,和登錄功能實現,本篇... ...
  • 這道題只要會自定義cmp恰當地進行排序,其他部分沒有什麼大問題。 上代碼: 1 #include<bits/stdc++.h> 2 using namespace std; 3 int n,s,h1,h2,cnt; 4 struct apple{ 5 int height,ns;//height為蘋 ...
  • 這篇文章主要描述RPC的路由策略,包括為什麼需要請求隔離,為什麼不在註冊中心中實現請求隔離以及不同粒度的路由策略。 ...
  • 簡介: 中介者模式,屬於行為型的設計模式。用一個中介對象來封裝一系列的對象交互。中介者是各對象不需要顯式地相互引用,從而使其耦合鬆散,而且可以獨立地改變他們之間的交互。 適用場景: 如果平行對象間的依賴複雜,可以使用中介者解耦。 優點: 符合迪米特法則,減少成員間的依賴。 缺點: 不適用於系統出現對 ...
  • 【前置內容】Spring 學習筆記全系列傳送門: Spring學習筆記 - 第一章 - IoC(控制反轉)、IoC容器、Bean的實例化與生命周期、DI(依賴註入) Spring學習筆記 - 第二章 - 註解開發、配置管理第三方Bean、註解管理第三方Bean、Spring 整合 MyBatis 和 ...
  • 簡介: 享元模式,屬於結構型的設計模式。運用共用技術有效地支持大量細粒度的對象。 適用場景: 具有相同抽象但是細節不同的場景中。 優點: 把公共的部分分離為抽象,細節依賴於抽象,符合依賴倒轉原則。 缺點: 增加複雜性。 代碼: //用戶類 class User { private $name; fu ...
  • 這次設計一個通用的多位元組SPI介面模塊,特點如下: 可以設置為1-128位元組的SPI通信模塊 可以修改CPOL、CPHA來進行不同的通信模式 可以設置輸出的時鐘 狀態轉移圖和思路與多位元組串口發送模塊一樣,這裡就不給出了,具體可看該隨筆。 一、模塊代碼 1、需要的模塊 通用8位SPI介面模塊 `tim ...
  • AOP-03 7.AOP-切入表達式 7.1切入表達式的具體使用 1.切入表達式的作用: 通過表達式的方式定義一個或多個具體的連接點。 2.語法細節: (1)切入表達式的語法格式: execution([許可權修飾符] [返回值類型] [簡單類名/全類名] [方法名]([參數列表]) 若目標類、介面與 ...
  • 測試一、虛繼承與繼承的區別 1.1 單個繼承,不帶虛函數 1>class B size(8): 1> + 1> 0 | + (base class A) 1> 0 | | _ia //4B 1> | + 1> 4 | _ib //4B 有兩個int類型數據成員,占8B,基類邏輯存在前面 1.2、單個 ...