傳統MySQL+ Memcached架構遇到的問題 實際MySQL是適合進行海量數據存儲的,通過Memcached將熱點數據載入到cache,加速訪問,很多公司都曾經使用過這樣的架構,但隨著業務數據量的不斷增加,和訪問量的持續增長,我們遇到了很多問題: 1.MySQL需要不斷進行拆庫拆表,Memca ...
傳統MySQL+ Memcached架構遇到的問題
實際MySQL是適合進行海量數據存儲的,通過Memcached將熱點數據載入到cache,加速訪問,很多公司都曾經使用過這樣的架構,但隨著業務數據量的不斷增加,和訪問量的持續增長,我們遇到了很多問題:
1.MySQL需要不斷進行拆庫拆表,Memcached也需不斷跟著擴容,擴容和維護工作占據大量開發時間。
2.Memcached與MySQL資料庫數據一致性問題。
3.Memcached數據命中率低或down機,大量訪問直接穿透到DB,MySQL無法支撐。
4.跨機房cache同步問題。
眾多NoSQL百花齊放,如何選擇
最近幾年,業界不斷涌現出很多各種各樣的NoSQL產品,那麼如何才能正確地使用好這些產品,最大化地發揮其長處,是我們需要深入研究和思考的問題,實際歸根結底最重要的是瞭解這些產品的定位,並且瞭解到每款產品的tradeoffs,在實際應用中做到揚長避短,總體上這些NoSQL主要用於解決以下幾種問題
1.少量數據存儲,高速讀寫訪問。此類產品通過數據全部in-momery 的方式來保證高速訪問,同時提供數據落地的功能,實際這正是Redis最主要的適用場景。
2.海量數據存儲,分散式系統支持,數據一致性保證,方便的集群節點添加/刪除。
3.這方面最具代表性的是dynamo和bigtable 2篇論文所闡述的思路。前者是一個完全無中心的設計,節點之間通過gossip方式傳遞集群信息,數據保證最終一致性,後者是一個中心化的方案設計,通過類似一個分散式鎖服務來保證強一致性,數據寫入先寫記憶體和redo log,然後定期compat歸併到磁碟上,將隨機寫優化為順序寫,提高寫入性能。
4.Schema free,auto-sharding等。比如目前常見的一些文檔資料庫都是支持schema-free的,直接存儲json格式數據,並且支持auto-sharding等功能,比如mongodb。
面對這些不同類型的NoSQL產品,我們需要根據我們的業務場景選擇最合適的產品。
Redis適用場景,如何正確的使用
前面已經分析過,Redis最適合所有數據in-momory的場景,雖然Redis也提供持久化功能,但實際更多的是一個disk-backed的功能,跟傳統意義上的持久化有比較大的差別,那麼可能大家就會有疑問,似乎Redis更像一個加強版的Memcached,那麼何時使用Memcached,何時使用Redis呢?
如果簡單地比較Redis與Memcached的區別,大多數都會得到以下觀點:
1 Redis不僅僅支持簡單的k/v類型的數據,同時還提供list,set,zset,hash等數據結構的存儲。
2 Redis支持數據的備份,即master-slave模式的數據備份。
3 Redis支持數據的持久化,可以將記憶體中的數據保持在磁碟中,重啟的時候可以再次載入進行使用。
拋開這些,可以深入到Redis內部構造去觀察更加本質的區別,理解Redis的設計。
在Redis中,並不是所有的數據都一直存儲在記憶體中的。這是和Memcached相比一個最大的區別。Redis只會緩存所有的 key的信息,如果Redis發現記憶體的使用量超過了某一個閥值,將觸發swap的操作,Redis根據“swappability = age*log(size_in_memory)”計 算出哪些key對應的value需要swap到磁碟。然後再將這些key對應的value持久化到磁碟中,同時在記憶體中清除。這種特性使得Redis可以 保持超過其機器本身記憶體大小的數據。當然,機器本身的記憶體必須要能夠保持所有的key,畢竟這些數據是不會進行swap操作的。同時由於Redis將記憶體 中的數據swap到磁碟中的時候,提供服務的主線程和進行swap操作的子線程會共用這部分記憶體,所以如果更新需要swap的數據,Redis將阻塞這個 操作,直到子線程完成swap操作後才可以進行修改。
使用Redis特有記憶體模型前後的情況對比:
VM off: 300k keys, 4096 bytes values: 1.3G used
VM on: 300k keys, 4096 bytes values: 73M used
VM off: 1 million keys, 256 bytes values: 430.12M used
VM on: 1 million keys, 256 bytes values: 160.09M used
VM on: 1 million keys, values as large as you want, still: 160.09M used
當 從Redis中讀取數據的時候,如果讀取的key對應的value不在記憶體中,那麼Redis就需要從swap文件中載入相應數據,然後再返回給請求方。 這裡就存在一個I/O線程池的問題。在預設的情況下,Redis會出現阻塞,即完成所有的swap文件載入後才會相應。這種策略在客戶端的數量較小,進行 批量操作的時候比較合適。但是如果將Redis應用在一個大型的網站應用程式中,這顯然是無法滿足大併發的情況的。所以Redis運行我們設置I/O線程 池的大小,對需要從swap文件中載入相應數據的讀取請求進行併發操作,減少阻塞的時間。
如果希望在海量數據的環境中使用好Redis,我相信理解Redis的記憶體設計和阻塞的情況是不可缺少的。
補充的知識點:
memcached和redis的比較
1 網路IO模型
Memcached是多線程,非阻塞IO復用的網路模型,分為監聽主線程和worker子線程,監聽線程監聽網路連接,接受請求後,將連接描述字pipe 傳遞給worker線程,進行讀寫IO, 網路層使用libevent封裝的事件庫,多線程模型可以發揮多核作用,但是引入了cache coherency和鎖的問題,比如,Memcached最常用的stats 命令,實際Memcached所有操作都要對這個全局變數加鎖,進行計數等工作,帶來了性能損耗。
(Memcached網路IO模型)
Redis使用單線程的IO復用模型,自己封裝了一個簡單的AeEvent事件處理框架,主要實現了epoll、kqueue和select,對於單純只有IO操作來說,單線程可以將速度優勢發揮到最大,但是Redis也提供了一些簡單的計算功能,比如排序、聚合等,對於這些操作,單線程模型實際會嚴重影響整體吞吐量,CPU計算過程中,整個IO調度都是被阻塞住的。
2.記憶體管理方面
Memcached使用預分配的記憶體池的方式,使用slab和大小不同的chunk來管理記憶體,Item根據大小選擇合適的chunk存儲,記憶體池的方式可以省去申請/釋放記憶體的開銷,並且能減小記憶體碎片產生,但這種方式也會帶來一定程度上的空間浪費,並且在記憶體仍然有很大空間時,新的數據也可能會被剔除,原因可以參考Timyang的文章:http://timyang.net/data/Memcached-lru-evictions/
Redis使用現場申請記憶體的方式來存儲數據,並且很少使用free-list等方式來優化記憶體分配,會在一定程度上存在記憶體碎片,Redis跟據存儲命令參數,會把帶過期時間的數據單獨存放在一起,並把它們稱為臨時數據,非臨時數據是永遠不會被剔除的,即便物理記憶體不夠,導致swap也不會剔除任何非臨時數據(但會嘗試剔除部分臨時數據),這點上Redis更適合作為存儲而不是cache。
3.數據一致性問題
Memcached提供了cas命令,可以保證多個併發訪問操作同一份數據的一致性問題。 Redis沒有提供cas 命令,並不能保證這點,不過Redis提供了事務的功能,可以保證一串 命令的原子性,中間不會被任何操作打斷。
4.存儲方式及其它方面
Memcached基本只支持簡單的key-value存儲,不支持枚舉,不支持持久化和複製等功能
Redis除key/value之外,還支持list,set,sorted set,hash等眾多數據結構,提供了KEYS
進行枚舉操作,但不能線上上使用,如果需要枚舉線上數據,Redis提供了工具可以直接掃描其dump文件,枚舉出所有數據,Redis還同時提供了持久化和複製等功能。
5.關於不同語言的客戶端支持
在不同語言的客戶端方面,Memcached和Redis都有豐富的第三方客戶端可供選擇,不過因為Memcached發展的時間更久一些,目前看在客戶端支持方面,Memcached的很多客戶端更加成熟穩定,而Redis由於其協議本身就比Memcached複雜,加上作者不斷增加新的功能等,對應第三方客戶端跟進速度可能會趕不上,有時可能需要自己在第三方客戶端基礎上做些修改才能更好的使用。
根據以上比較不難看出,當我們不希望數據被踢出,或者需要除key/value之外的更多數據類型時,或者需要落地功能時,使用Redis比使用Memcached更合適。
關於Redis的一些周邊功能
Redis除了作為存儲之外還提供了一些其它方面的功能,比如聚合計算、pubsub、scripting等,對於此類功能需要瞭解其實現原理,清楚地瞭解到它的局限性後,才能正確的使用,比如pubsub功能,這個實際是沒有任何持久化支持的,消費方連接閃斷或重連之間過來的消息是會全部丟失的,又比如聚合計算和scripting等功能受Redis單線程模型所限,是不可能達到很高的吞吐量的,需要謹慎使用。
總的來說Redis作者是一位非常勤奮的開發者,可以經常看到作者在嘗試著各種不同的新鮮想法和思路,針對這些方面的功能就要求我們需要深入瞭解後再使用。
總結:
1.Redis使用最佳方式是全部數據in-memory。
2.Redis更多場景是作為Memcached的替代者來使用。
3.當需要除key/value之外的更多數據類型支持時,使用Redis更合適。
4.當存儲的數據不能被剔除時,使用Redis更合適。